Ethyne and flying food cans


Demonstrations to capture the student's imagination, by Declan Fleming of Pate's Grammar School, Cheltenham.
In this issue: Ethyne and flying food cans

 

Calcium carbide is one of my favourite chemicals - with it you can produce ethyne (acetylene) anywhere, just add water! An exploration of ethyne's properties is essential at KS5 (16+) when introducing alkynes and it's fantastic for demonstrating incomplete combustion when discussing the issues with burning fuels at any age. Of course, if you have a fuel you will want to show how the energy released from its combustion can be put to good use.

Kit 

  • Calcium carbide chips (<10 mm) [highly flammable] 
  • 250 cm3 beaker 
  • 200 g powdered food can1 (eg custard or skimmed milk) 
  • modified piezo-electric gas lighter2 
  • plastic tray 
  • 50 cm3 plastic beaker 
  • Safety screens 
  • Eye protection 

Procedure 

Preparation 

To show this energy being harnessed, the fuel can be ignited in a small food can with a volume of approximately 600 cm3. Place the plastic lid of the pot upside down in a tray (to contain any spilt liquid). There should be a safety screen and 2 metres space between the audience and the tray and another to protect the demonstrator. The tray itself can be on the desk if you have adequate ceiling clearance but if the room is less than 4 metres high do the demonstration on the floor. Place a 50 cm3 plastic beaker containing 20 cm3 of water on the lid. 

Bore a small hole (<10 mm) large enough to pass through the contacts from a modified piezo-electric gas lighter approximately 10 mm from the base of the can. With your contacts ready, measure 5 chips (approx 0.6 g) of calcium carbide into a dry weighing boat and replace the lid on the calcium carbide pot. 

In front of the audience 

Begin by showing the audience that a gas is produced when calcium carbide is added to water. A few chips in the bottom of a beaker will produce bubbles which can be lit on the surface of the liquid, often producing a dull report. The ethyne will burn with a yellow flame and produce plenty of soot. 

Return to your food can. Ensure your contacts are true within the can and they are sparking. Short out the contacts against the metal of the body to avoid premature sparking. Place the calcium carbide chips in the water and invert the food can over its lid (and the water/calcium carbide) to collect some gas. Retreat with your piezo electric lighter to a distance of 2 metres and after 6 seconds ignite the fuel mixture. A flash and report will follow and the food can will be launched up to 3 metres in the air. 

A flying food tin can demonstrate the energy release from some ignited chips of calcium carbide

Teaching goal 

At KS3 (11+) and KS4 (14+) this is a good demonstration to show that useful energy transfers can be obtained from chemical reactions and for showing the products of incomplete combustion. This is returned to in KS5 (16+) where students should be able to provide their own balanced equations for the possible incomplete combustion occurring, eg: 

3C2H2 + 4O2 right arrow 2C + 3CO + CO2 + 3H2

Alternative methods 

This experiment scales well. A larger (catering-sized) cardboard food can works well (a 2 kg hot chocolate can is pictured). Here a thin plastic coleslaw pot was used for the reaction mixture and instead of placing a lid on the can it was inverted in a shallow tray of water. At this scale, lids will often fail during the explosion. 20 chips (approx. 2.3 g) were placed in the coleslaw pot and the acetylene was left to collect for 45 seconds. Anything larger than a custard pot should be demonstrated outside. 

Larger can sizes than this can be unpredictable and involve long waits to reach an explosive mixture. 

Notes

Instructions on how to construct one of these are on the Practical Chemistry website. See the link on this page.

Further Reading

Some of the chemistry of ethyne has been discussed in a previous Exhibition Chemistry, September 2006, p123. See the link on this page. 

Health and Safety

Audience and demonstrator should wear eye protection. If you get calcium carbide on the skin, wash off with plenty of water. 

Replace the lid on the calcium carbide container immediately after removing the chips. 

If you have a metal tin of calcium carbide which you need to lever open, do not use a metal lever as any spark could ignite ethyne that may have build up inside. 

Do not use glass beakers in place of a plastic one inside the food can. Never replace the air with oxygen - this will result in a damaging explosion. 

Note:  this demonstration is not covered by the model risk assessments in common use. A special risk assessment is required: Members should contact CLEAPSS or (in Scotland) SSERC. 






Related Links

oxy-acetylene torch

Making ethyne

Demonstrations designed to capture the student's imagination, by Colin Baker of Bedford School. In this issue: making ethyne. From Education in Chemistry, September 2006, p123.


Related Links

Link icon Practical Chemistry - a hydrogen powered rocket
Find out how to make a piezo-electric gas lighter


External links will open in a new browser window



Downloadable Files

Ethyne and flying food cans
Download this article as it originally appeared in Education in Chemistry
PDF iconPDF (329k)  


PDF files require Link icon Adobe Acrobat Reader