Volume 130, 2005

Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation

Abstract

A large and increasing fraction of the planet’s population lives in megacities, especially in the developing world. These large metropolitan areas generally have very high levels of both gaseous and particulate air pollutants that have severe impacts on human health, ecosystem viability, and climate on local, regional, and even continental scales. Emissions fluxes and ambient pollutant concentration distributions are generally poorly characterized for large urban areas even in developed nations. Much less is known about pollutant sources and concentration patterns in the faster growing megacities of the developing world. New methods of locating and measuring pollutant emission sources and tracking subsequent atmospheric chemical transformations and distributions are required. Measurement modes utilizing an innovative van based mobile laboratory equipped with a suite of fast response instruments to characterize the complex and “nastier” chemistry of the urban boundary layer are described. Instrumentation and measurement strategies are illustrated with examples from the Mexico City and Boston metropolitan areas. It is shown that fleet average exhaust emission ratios of formaldehyde (HCHO), acetaldehyde (CH3CHO) and benzene (C6H6) are substantial in Mexico City, with gasoline powered vehicles emitting higher levels normalized by fuel consumption. NH3 exhaust emissions from newer light duty vehicles in Mexico City exceed levels from similar traffic in Boston. A mobile conditional sampling air sample collection mode designed to collect samples from intercepted emission plumes for later analysis is also described.

Article information

Article type
Paper
Submitted
11 Jan 2005
Accepted
25 Jan 2005
First published
17 May 2005

Faraday Discuss., 2005,130, 327-339

Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation

S. C. Herndon, J. T. Jayne, M. S. Zahniser, D. R. Worsnop, B. Knighton, E. Alwine, B. K. Lamb, M. Zavala, D. D. Nelson, J. B. McManus, J. H. Shorter, M. R. Canagaratna, T. B. Onasch and C. E. Kolb, Faraday Discuss., 2005, 130, 327 DOI: 10.1039/B500411J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements