Issue 5, 2008

Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents

Abstract

High aspect-ratio hydrogel pillars are attractive in applications, such as tissue engineering, actuation, and sensing. By replica molding from respective partially polymerized precursor solutions, followed by photocross-linking with ethylene glycol dimethacrylate (EGDMA), we successfully fabricated three kinds of high-aspect-ratio (up to 12) hydrogel pillar arrays, including poly(hydroxyethyl methacrylate) (PHEMA)-based, poly(hydroxyethyl methacrylate-co-N-isopropylacrylamide) (PHEMA-co-PNIPA)-based, and poly(ethylene glycol dimethacrylate) (PEGDMA) systems. In the dry state, all hydrogel pillars were mechanically robust and maintained their structural integrity. When exposed to water, PHEMA-co-PNIPA conical pillar array was wetted and swollen by water, which drastically decreased its Young's modulus. The combination of reduction in stiffness and capillary force between pillars caused PHEMA-co-PNIPA conical pillars to collapse on the substrate after drying from water in air. In comparison, highly cross-linked PEGDMA conical pillars were not wetted by water and maintained high stability since their Young's modulus exceeded the critical modulus required for pattern collapse by capillary force. When exposed to a lower surface energy solvent, ethanol, however, the PEGDMA conical pillars surface became wettable and the pillars collapsed after drying due to capillary force. Depending on the pillar array geometry, PEGDMA pillars dried from ethanol collapsed either randomly in the case of conical pillar array or in groups of four in the case of more densely packed circular pillars.

Graphical abstract: Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents

Article information

Article type
Paper
Submitted
15 Nov 2007
Accepted
07 Feb 2008
First published
29 Feb 2008

Soft Matter, 2008,4, 979-984

Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents

D. Chandra, J. A. Taylor and S. Yang, Soft Matter, 2008, 4, 979 DOI: 10.1039/B717711A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements