NEGATIVE DIELECTROPHORETIC FORCE BASED SEPARATION SYSTEM FOR HUMAN BREAST CANCER CELL (MCF 7) IN DILUTED RED BLOOD CELLS (RBC)

Junghun Lee, Youngho Kim and Byungkyu Kim
Korea Aerospace University (KAU) Robotics Center, Korea Aerospace University, Goyang-city, Gyeonggi-do, 412-791, South Korea

ABSTRACT
We present a high-throughput sorting (HTS) platform based on gravitation, hydrodynamic force and negative dielectrophoretic (n-DEP) force. This platform is contrived for the separation of human breast cancer cell in diluted RBCs. As we apply the electric field to comb-type electrode (CE) array, n-DEP force acts on the particles. Accordingly, summation among gravitation, hydrodynamic force and n-DEP force determines the direction of particle movement. Based on the aforementioned principle, human breast cancer cell in diluted RBCs are separated under the condition of low voltage (10Vp-p with 500 KHz) and flow rate of 20μL/min due to draining of water.

KEYWORDS: High Throughput, Negative Dielectrophoretic (n-DEP), Cancer cell, RBCs

INTRODUCTION
For early diagnosis or analysis of tumor, separation process plays a key role in the field of cancer research. Recently, combined with microfabrication technology, various applications based on non-Newtonian force have been reported. One of the applications is Dielectrophoretically-activated cell sorting (DACS) platform, which is designed to separate target particle by discerning difference of dielectrophoretic response of particles in non-uniform electric field. Since the early principle of DACS platform for separation of yeast cells was proposed by Pethig et al., [1] the shape of microelectrode becomes a critical parameter to analyze or manipulate target particles. Based on the castellated [1], spiral [2], or partially curved [3] microelectrodes, dielectric material property (DMP) of various particles was investigated. Especially, through enrichment of CD34+ cells [1] or separation of breast cancer cells from lymphocytes [1], DACS platform is demonstrated as a tool for rare cell separation. However, in that dielectrophoretic response of particles under non-uniform electric field is dependent on low fluid flow rate in microchannel, it is difficult to realize high-throughput separation system in the microchannel. Therefore, we propose the HTS platform that comprises macro size channel (1.2mm x 0.5mm x 12.3mm) and CE array (Figure 1) that generates n-DEP force. In this system, the flow in vertical pool is derived by gravitation.

EXPERIMENTAL SETUP AND WORKING PRINCIPLE
As shown in Figure 2, we illustrate a basic principle for separation of MCF 7 cells in diluted RBCs. Owing to the vector summation among gravitation, hydrodynamic force and n-DEP force acting on the MCF 7 cells in non-uniform electric field (10Vp-p with 500 KHz), MCF 7 cells are deflected on the CE array. On the other hand, RBCs experience only...
the gravitation and hydrodynamic force except for the n-DEP force. Consequently, MCF 7 cells and RBCs are collected in outlet B and outlet A respectively.

RESULTS AND DISCUSSION

With cell mixture with ratio of $1 : 1 \times 10^5$ (MCF 7 cell to RBC), we investigate separation of MCF 7 from diluted RBCs (Figure 3_a). In order to study feasibility of separation principle, non-uniform electric field in vicinity of the electrode array is analyzed through numerical studies with a commercial code (CFD-ACE®) (Figure 3_b).

Figure 2. Basic principle of MCF 7 cell separation based on dielectrophoretic response of particle in non-uniform electric field; Gravitation (G), Hydrodynamic force (H), the first vector summation (F_{vs}), Negative dielectrophoretic force (D), and the second vector summation (S_{vs}).

Figure 3. Numerical and Experimental results for separation of human breast cancer cell (MCF7) in diluted red blood cells (RBCs); a) before separation, we prepare cell mixture with ratio of $1 : 1 \times 10^5$ (MCF 7 cell to RBC). b) numerical studies based on commercial code (CFD-ACE®); n-DEP area for dielectrophoretic deflection of particle is estimated. c-e) Experimental studies; when cell mixture (including MCF 7 cell and RBC) pass through the CE array, MCF 7 cells follow the streamline, corresponding to vector summation among n-DEP force,
As in numerical result, we confirm experimentally that the negative DEP force induced by the CE array is applicable to separate MCF 7 cell from RBCs as shown in Figure 3. Through the experiments with three different kinds of concentration (1:1.26 x 10⁴, 1:2.27 x 10⁴, and 1:6.26 x 10⁴), we confirm that this platform can separate MCF 7 cell with 71% of separation efficiency in case of the ratio of 1:6.26 x 10⁴ (Table 1).

Table 1. Counts of human breast cancer cells (MCF 7) in outlet A and outlet B before and after separation *

<table>
<thead>
<tr>
<th>Target ratio (MCF 7 : RBC)</th>
<th>Measured initial ratio (MCF 7 : RBC)</th>
<th>Separation Efficiency after separation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outlet A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCF 7 c</td>
</tr>
<tr>
<td>1 : 1.0 x10⁴</td>
<td>1 : 1.26 x 10⁴</td>
<td>53</td>
</tr>
<tr>
<td>1 : 2.0 x10⁴</td>
<td>1 : 2.27 x 10⁴</td>
<td>38</td>
</tr>
<tr>
<td>1 : 6.0 x10⁴</td>
<td>1 : 6.26 x 10⁴</td>
<td>29</td>
</tr>
</tbody>
</table>

*: Applied voltage = 10Vp-p at 500KHz; Flow rate due to drain of vertical pool = 20 μL/min; Medium conductivity = 2.01 mS/cm.

CONCLUSION
For the separation of human breast cancer cell (MCF 7) in diluted RBCs, we introduced gravitation, hydrodynamic force and n-DEP force. It was found that the performance of HTS platform is dependent on the magnitude of hydrodynamic flow. Especially, we demonstrated that the lower ratio of MCF 7 in diluted RBCs mixture leads to the better efficiency of MCF 7, relatively. It is because increase of the number of MCF 7 disturbs movement of RBCs into outlet A. It can be said that hydrodynamic force due to movement of many MCF cells is dominant over summation of gravitation and n-DEP acting on RBCs. Therefore, we aim to develop an universal tool for sorting with high purity.

ACKNOWLEDGEMENTS
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No.2008-0060445) and the Korea Science and Engineering Foundation (KOSEP) (No.2005-2000206).

REFERENCES

CONTACT
Byungkyu Kim, tell: +82-2-3000101; bkim@kau.ac.kr