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ABSTRACT 

This paper presents a 2.45 GHz microwave cavity resonator with the novel dual function of both sensitive dielectric 

characterisation and directed, volumetric heating of fluids in a microfluidic chip. This method is shown to have a higher 

efficiency (>90 % for methanol), higher rate of heating and more accurate control than previous microfluidic microwave 

heating methods [1], [2]. The system is simple, robust and does not require on-chip integration of waveguide structures. 

Furthermore, this method can be combined with miniaturised resonators such as split rings [3] for localisation of heating 

within a microfluidic chip. 
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INTRODUCTION 

Compared to traditional microfluidic heating methods such as Joule heating via embedded wires or micro Peltier 

junctions, microwave heating has several advantages. It is efficient, non-contact, volumetric, selective (i.e., only polar 

liquids heat appreciably) and immediate, with no thermal transport, so heating begins on a ns time scale.  

With our single mode resonator and novel control system, high precision permittivity measurements on a ms sample 

time can also be made, allowing high speed temperature control without the need for additional temperature sensors. 

Compared to non-resonant microwave excitation, this method has a much greater efficiency and around 1000 times 

greater sensitivity, and it does not require the integration of lossy waveguide structures on chip, which also simplifies 

fabrication.  

The combination of microwave heating in a multiphase system, particularly with a solid phase consisting of strongly 

absorbing particles, has great potential for high efficiency separation and synthesis. Complex permittivity is also a useful 

diagnostic measurement which has been proven for microfluidic compositional analysis [3] and is a good additional input 

to multisensor fusion systems owing to its high sensitivity and low noise. Previous applications of microwave heating 

which could all benefit from this resonant technique include on-chip reactors, microwave-assisted extraction (MAE) [4], 

DNA amplification [5], and polymer bead synthesis [6]. 

Additionally, since rapid heating is possible with only a few Watts, low voltage power supplies and miniaturised 

components designed for mobile communications can be used, allowing the entire system to be scaled into compact, 

portable devices and facilitating truly miniaturised microsynthesis systems and scalable industrial microfluidics. 

 

THEORY 

Dielectric heating in fluids is caused by Joule heating through the movement of ionic charge carriers and the viscous 

damping of dipole movement induced by a time-varying electric field. The time-averaged heating power ‹P› within a 

sample volume VS  produced by a uniform applied electric field E at frequency ω is given by:  
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Heating is governed by ε″
S , the sample’s dielectric loss factor. Since ε″

S  is material-specific, selective and efficient 

heating is possible. The term immediately preceding |E|
2
 accounts for the depolarization of the sample; εM is the 

permittivity of the surrounding matrix and εS is the sample permittivity. Depolarization occurs when the electric field 

crosses the sample boundary, the factor N then depends on sample geometry; for a spherical droplet, N = 1/3, and for a 

cylindrical channel with the field perpendicular to its axis, N = 1/2. Only when the field is applied along the axis of a 

channel is N = 0, the term is then 1 and the geometry is said to be non-depolarizing. Depolarization can make heating 

inefficient; e.g., the heating power of a water droplet, εS  ≈ 80 – 10i, in a low loss fluorocarbon oil, εM  ≈ 2, is about 1/20 

of a water column in a non-depolarizing geometry.  

Microwave resonators have unparalleled sensitivity to changes in permittivity. The measurement is based on the 

dependence between the resonant frequency and sample permittivity, and between the change in the ‘sharpness’ or Q of 

the resonance and the sample loss. If the sample perturbs the stored energy only slightly then this dependence is linear. 

 

EXPERIMENTAL 

The assembly of the rectangular cavity is shown in Figure 1. The TE011 mode is used since there is no electric field 

depolarization within the vertical sections of the microfluidic channels, as shown in Figure 2, thus achieving a high 

efficiency and heating rate with µl samples ( > 90 % efficiency for methanol). Microfluidic devices were fabricated from 

PTFE with micromilled channels, bonded using a commercial polyolefin-based bonding film to form a durable cartridge 
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(90×60×4 mm) which can be inserted into a slot in the cavity. For these experiments a simple ‘U-shaped’ channel of 

500×500 µm was used. M6 finger-tight fittings fastened with a connector bar are used to interface to a flow system.  

In our novel measurement system, shown in Figure 3, the resonator is characterized by passing a modulated signal 

through the resonator, demodulating it and analyzing the response digitally. The complex permittivity of fluids is thus 

determined in real time without requiring a vector network analyzer. Microwave power up to 2 W is provided by a 

synthesiser combined with a 35 dB power amplifier and is coupled into the resonator using a magnetic coupling loop. 

Both sensing and heating are controlled using a National Instruments (NI) RF signal generator (RFSG) and RF signal 

analyzer (RFSA), which allows a real time sampling period as low as 5 ms. Control of heating is achieved by varying the 

period of a heating pulse modulated by a PiN-diode switch (internal to the RFSG). The architecture of this system is 

similar to a simple communications front-end and thus may be implemented at 2.45 GHz very economically with 

commercially available and miniaturised electronics designed for the telecommunications industry. 
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Figure 2: Finite element simulation of the cavity with chip 

consisting of a single channel. Arrows show E field direction. 
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Figure 1: Assembly graphic of the microwave 

 cavity-based microfluidic heating system.  

Figure 3: Microwave control system configuration.  

 

RESULTS AND DISCUSSION 

A range of solvents were tested within the resonator; the resonator frequency response with each is shown in Figure 4. 

Maximum power transfer into the resonator occurs when so-called critical coupling is achieved. For simplicity in our 

device coupling was adjusted manually by rotating the power coupling loop. A reflection coefficient |Γ|
 
< −40 dB can be 

achieved, however only with servo control can critical coupling be ensured for all samples and temperatures. Cavity 

perturbation theory states that sample heating efficiency is related to the ratio of the resonator’s Q with the sample to the 

Q with no sample (i.e., air). Thus the overall heating efficiency in terms of amplifier output power is: 
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This equation was used to estimate the heating efficiency for various solvents (Figure 6) and standard perturbation 

theory was used to estimate their permittivity (Figure 7). The uncertainty in absolute values of permittivity (~ 5 %) is 

dominated by the static uncertainty in the channel dimensions. However, the measurement deviation is just a few ppm, so 

differential comparisons are much more accurate. The measured response of water to a 2 W pulse is shown in the inset of 

Figure 4. The initial heating rate is approximately 10 K/s, which slows as the water is heated due to the loss of critical 

coupling (which could be prevented with dynamic coupling control) and the reduction in the loss factor of water.  

The permittivity temperature dependence of a known material can be used to regulate heating. A controlled heating 

cycle based on feedback of permittivity measurements is shown in Figure 5. HPLC grade water was heated at a flow rate 

of 0.5 ml/min, the sampling rate was 50ms. The instability at the top of the heating cycle is thought to be due to bubble 
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nucleation, as gas segments were seen at the outlet. A better control algorithm could reduce the magnitude of the 

additional fluctuations.  
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Figure 4: Microwave transmission response of the cavity 

resonator with different solvents present in the microfluidic 

chip. Inset: Response of water to a 2 W pulse of microwave 

power. Axes are permittivity against time in seconds 

Figure 5: Change in resonant frequency over an 

arbitrary controlled heating cycle (linear ramp, hold at 

50°C and linear cool-down). Temperature measured by a 

thermocouple at the chip outlet is shown in red. 
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Figure 6: Estimated heating efficiency based on resonator 

measurements of solvents. The second set of data are 

corrected for the dissipation in the chip itself. 

Figure 7: Complex relative permittivity of solvents based 

on standard cavity perturbation theory, from the same 

experimental setup as the data in Figure 5. 
 

CONCLUSION 

Using a resonator to provide microwave heating results in a high efficiency and combined with our measurement 

system also provides simultaneous permittivity measurement which can be successfully used for temperature control. Due 

to the non-depolarizing geometry and high thermal isolation, heating rates are close to the maximum possible with any 

heating method for high loss factor liquids such as water and methanol. Future work will be to incorporate servo-

controlled coupling, localisation of heating using miniature resonators, and refinement of the heating control system. 
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