NOVEL MICRO GAS GENERATOR
OF CARBON DIOXIDE
FOR ACTUATION AND GAS SOURCE

Yo Han Choi and Seung S. Lee
Department of Mechanical Engineering,
Pohang University of Science and Technology

Abstract

This paper presents a novel microgenerator of CO₂ (carbon dioxide) gas. Chemical reactions result in the production of CO₂ gas, which is used as actuation in addition to gas supplier.

Keywords: Micropump, Carbon dioxide, Sodium bicarbonate

1. Introduction

The use of gas as pumping source was previously reported [1, 2] in which they electrically hydrolyzed water for the production of gases. Another group recently reported the production of N₂ (nitrogen) gas for the generation of pumping power [3]. We also simultaneously reported a novel micropump which is actuated through the production of O₂ (oxygen) gas [4]. We now report another type of gas generator which is more versatile than the previous ones.

2. Theory

It is well known that NaHCO₃ (sodium bicarbonate) can easily be decomposed into water and gaseous CO₂ by heating as the following chemical equation:

\[2 \text{NaHCO}_3 (s) \rightarrow \text{Na}_2\text{CO}_3 (s) + \text{H}_2\text{O} (l) + \text{CO}_2 (g) \] \hspace{1cm} (1)

CO₂ can also be produced from NaHCO₃ after reaction with mild acid such as HOC(COOH)(CH₂COOH)₂ (citric acid):

\[3 \text{NaHCO}_3 (s) + \text{HOC(COOH)(CH}_2\text{COOH)}_2 (s) \rightarrow \text{HOC(COOH)(CH}_2\text{COONa)}_2 (s) + 3 \text{H}_2\text{O} (l) + 3 \text{CO}_2 (g) \] \hspace{1cm} (2)
Fig. 1 Schematic diagrams of the two types of CO₂ generators. Pyrolysis of NaHCO₃ produces CO₂ gas (a). Otherwise, CO₂ is produced after the reaction of NaHCO₃ with citric acid (b). The reaction is started by addition of water to melt citric acid. Parafilm which is used as a barrier is melted by underlaid microheater.

The reaction of NaHCO₃ can be applied to CO₂ supplier as well as micropumps. Fig.1 shows the constitution and action mechanism of CO₂ generator. NaHCO₃ in a chamber is decomposed by the underlaid microheater (Fig. 1a). Alternatively, water droplet is caged by paraffin layer and released by heating. The released water dissolve HO(COOH)(CH₂COOH)₂ powder and then, NaHCO₃ reacts with HO(COOH)(CH₂COOH)₂ and CO₂ is produced (Fig. 1b).

3. Fabrication

Two types of CO₂ generator were fabricated based on equation (1) and (2), respectively, and fabrication process is illustrated in Fig. 2. Aluminum was thermally evaporated (Fig. 2a) and microheater was patterned on a glass plate (Fig. 2b). Punctured PDMS (polydimethyl siloxane) was layered on the glass for a chamber of NaHCO₃ or NaHCO₃/HO(COOH)(CH₂COOH)₂ mixture (Fig. 2c). Pattern of microchannel and chambers was made by SU-8 (a negative photoresist) and used as mold for PDMS upper sheet. CO₂ generator was completed by being covered with this upper PDMS sheet just after pouring NaHCO₃ or NaHCO₃/HO(COOH)(CH₂COOH)₂.
(COOH) (CH₂COOH)₂ mixture (Fig. 2d and 2e).

4. Results

CO₂ generator was activated by electrical input, which resulted in the pyrolysis of NaHCO₃ or the melting of paraffin layers. Sample in chamber was pushed through a microchannel by the produced CO₂. The movement of sample through a microchannel is shown in Fig. 3. Fig. 4 shows the reaction chamber in which NaHCO₃ reacts with HOC(COOH) (CH₂COOH)₂ producing CO₂ bubbles. Theoretically, more than 1.3 ml of CO₂ gas is produced from 5 mg of NaHCO₃, the actually used quantity.

5. Discussion

 Constituents of CO₂ generators described in this paper is simple, easy to be controlled and integrated, and totally bio-compatible. In addition, CO₂ gas is known as an essential component in the culture of animal...
Fig. 4 Production of CO₂ bubbles through the reaction of NaHCO₃ with citric acid. Ballooning of CO₂ bubbles is indicated by arrows. Each time interval is one second.

cells. Because pH of culture media is controlled through the interaction between NaHCO₃ within culture media and CO₂ gas, gaseous CO₂ must be continuously supplied for the survival and growth of cells. We are now fabricating portable cell chips of which the pH is controlled by the integrated CO₂ generator.

Acknowledgements

This research was supported by a grant (02-K14-01-005-1-2) from Center for Nanoscale Mechatronics & Manufacturing, one of 21st Century Frontier Research Programs, Ministry of Science and Technology, KOREA

References