Mystery of green bacon solved


Have you ever wondered what the green pigment sometimes seen in bacon is? A team of US scientists did and have determined the structure of this 'nitrite burn'.

Nitrite, which is produced naturally in the body, has been used to preserve meat for centuries. It is essential for preventing botulism and also gives the cured meat its characteristic colour and flavour. In addition, its reaction with myoglobin is thought to produce the green pigment often seen on the meat.

Some people are concerned about whether this nitrite burn - and indeed nitrite itself - has any health implications. For instance, some fear that a similar reaction between nitrite and human haemoglobin could lead to blue baby syndrome, a disease whereby nitrite in the blood decreases haemoglobin's ability to carry oxygen (although this is usually caused by nitrites in groundwater, rather than food). However, little is known about its interactions with the body.

George Richter-Addo and his group at the University of Oklahoma have taken an important step in understanding nitrite's interaction with haem compounds by fully characterising the structure of nitrite burn using single crystal x-ray diffraction. Most significantly, they found that nitration occurs at the 2-vinyl group of the haem macrocycle, but not the 4-vinyl, which is attributed to steric factors.

'This is the first step to understanding the chemical function of this [nitrite burn],' explains Richter-Addo. 'Knowing the structure gives us very good hints on where we should proceed with looking at how it will react with other constituents present in the body.'

Scott Bohle, an expert in chemical biology at McGill University in Montreal, Canada, says that the work answers a lot of questions. 'The specificity is surprising,' he says. 'I find it interesting that the nitration occurs out here [on the vinyl moiety].' He also feels that there should now be more investigations in physiological conditions, and not just in the solid state.

Richter-Addo and is teams are now looking to investigate if nitrite burn affects the physiological function of myoglobin and whether there are other human proteins that are affected by nitrite.

References

  1. J Yi and G B Richter-Addo, Chem. Commun., 2012, DOI: 10.1039/c2cc31065a

Related Content

Chemistry World Podcast – May 2012

1 May 2012 Podcast | Monthly

news image

Chemistry World Podcast – May 2012

Mysterious selectivity of nature's blowtorches solved

14 November 2013 Research

news image

P450 enzymes C-H activation down to thiolate ligand

Most Commented

How to print a crystal in 3D

17 April 2014 Research

news image

Rather than looking at a crystal on a screen, print it out and hold it in your hand

Graphene made in a kitchen blender

22 April 2014 Research

news image

High quality flakes of two-dimensional material exfoliated from graphite points way to bulk production