Micromotors with built in compasses


Microtube and magnet

Iron containing microtubular engines can be magnetised and act as compass needles

A collaboration between scientists in Germany and Singapore has produced a micromotor that can be controlled by a magnetic field.

The motors are microtubes that contain a platinum catalyst and iron. The catalyst reacts with hydrogen peroxide to produce a jet of oxygen bubbles to drive the tube forward and the iron allows the tubes to react to a magnet. Gaining control of the direction in which the tubes travel is the challenge, and now scientists have found a way to manipulate the direction using magnets. This is a step towards a future in which they could be used inside the body, as engines in nanoscale systems or for environmental remediation.

Martin Pumera, who is based at Nanyang Technological University, Singapore, and his team, worked with researchers from the Leibniz Institute for Solid State and Materials Research Dresden, Germany, to make the micromotors. First they deposited thin layers of titanium, iron, chromium and platinum on a support. Once the support was removed, the layers rolled into a tube. Next, the microtubes were made into permanent magnets, using a neodymium magnet, and put into a hydrogen peroxide solution to test their reaction to external magnets.

Pumera explains that ‘the most exciting part was finding out that the microjets can sense the magnetic field from a large distance and autonomously move towards it and away from it’. Not being able to control the micromotors remotely had been a limitation in putting them to use.

Ayusman Sen, an expert in nanomotors from Pennsylvania State University, US, thinks this is an elegant way of controlling the micromotors and comments that in the future ‘multi-functional micromotors are expected to create new opportunities in situations that require exquisite control over the directionality of motion, such as drug delivery and minimally invasive surgery’.

Next, Pumera’s team will be working towards using the micromotors in real systems. ‘The ultimate goal of the field is to create a self-propelled, easy-to-navigate, autonomous device that can move in real-world environments,’ he says.

 


Related Content

Magnetic field and pH synergy controls therapeutic burst

21 March 2014 Research

news image

Schiff base bond only breaks and delivers drugs under the correct conditions, minimising damage to healthy cells

Breaking through the barrier

31 May 2011 Feature

news image

Getting drug molecules into the brain means crossing the defensive blood-brain barrier. Anthony King investigates how chemist...

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint