Coral animal chemical structures solved


Structure of breitfussin A © Wiley-VCH

A combination of atomic force microscopy (AFM) and computational techniques have been used to solve the unusual structures of two natural products from the Arctic coral-like animal, Thuiaria breitfussi. The compounds, known as breitfussins, have been difficult to study as they are only available in small amounts, preventing analysis by x-ray crystallography. Previously, researchers have used the standard techniques of mass spectrometry and NMR to identify indole, oxazole and pyrrole aromatic groups but could not piece them together.

By imaging the breitfussin molecules using AFM, the connections between the groups were clear and revealed that their unusual structures could be derived from the dipeptide proline–tryptophan. This technique was employed by the same team from IBM who previously rose to fame with their 2009 paper in Science where they were able to image molecules with individual atoms resolved. However, AFM was unable to differentiate between the oxygen and nitrogen in the oxazole ring and so the researchers could not place them confidently. Using computational approaches, the researchers calculated the expected 1H and 13C NMR chemical shifts and compared them to the experimental values to determine their positions.

Related Content

Life in the freeze frame

26 August 2014 Premium contentFeature

news image

Using x-rays to probe biological molecules has revolutionised science. Clare Sansom looks at a century of progress

Crystal clear

13 December 2013 Premium contentFeature

news image

With the international year of crystallography upon us, Clare Sansom celebrates this important discipline

Most Commented

Chlorinated compounds form in tea and coffee

24 November 2015 Research

news image

Treated water reacts with organics to form disinfection byproducts

Brazilian mine disaster releases dangerous metals

21 November 2015 News and Analysis

news image

Irreversible negative human health and environmental effects could result from Brazilian mine’s dam collapse