Oil loving membranes for oil spill clean-ups

Researchers in China have made a new type of membrane that can separate oil from water and could potentially be used in oil spills, such as the one in the Gulf of Mexico. The membrane works by interacting differently with the substances as it is both superhydrophobic and superoleophilic, so that it repels water but attracts oil. This means that the oil is absorbed through the membrane, but the water can’t penetrate.

The membrane is made from a polymerised fluorinated polybenzoxazine (F-PBZ) layer on top of cellulose acetate nanofibres. The scientists used an electrospinning technique (in which a viscous liquid is passed through a conducting needle to form a thread) to create a porous structure that makes the membrane even better at absorbing the oil.

Oil and water separation using the membrane

Oil and water separation using the membrane. The water and oil were dyed by methyl blue and oil red, respectively

Bin Ding from Donghua University leads the team that developed this technology. He explains that one of the best things about their membranes is that they are stable and can be used over a wide pH range, making them suitable for use in a variety of challenging environments. The complex surface of the membrane gives it a surface area of 58.96m2/g. Ding comments that ‘currently, there are no other membranes with such a high surface area for oil spill clean-up’.

John Howarter, an expert in polymer membranes from Purdue University, US, thinks this research is a significant achievement. ‘The performance of their materials is remarkable with the extreme contact angle difference between the oil (at 3 degrees) and water (161 degrees),’ he says. ‘Technology such as this is useful for dealing with large scale environmental problems, but could also be used in a manufacturing setting.’

Ding’s team’s use of simple techniques will make it possible for them to produce their membranes on a larger, industrial sized, scale in the future, but first they will be improving the structure of the membranes to fine tune their performance. They are also working on other F-PBZ hybrid fibrous membranes to see what else they can do with them.

Related Content

Emerging from Deepwater

20 April 2015 News and Analysis

news image

Five years after a BP oil rig explosion spewed millions of oil barrels into the Gulf of Mexico, key questions remain

Oil spill poses challenges to China's environment

3 August 2010 News Archive

news image

While BP deals with the aftermath of the biggest accidental oil spill in history, China has been struggling with its first la...

Most Commented

Chlorinated compounds form in tea and coffee

24 November 2015 Research

news image

Treated water reacts with organics to form disinfection byproducts

Brazilian mine disaster releases dangerous metals

21 November 2015 News and Analysis

news image

Irreversible negative human health and environmental effects could result from Brazilian mine’s dam collapse