(+)-Myrrhanol C made


Spanish chemists have completed the stereospecific total synthesis of (+)-myrrhanol C.

(+)-Myrrhanol C is a natural triterpene isolated from mastic gum (the resin of Pistacia lentiscus), a substance well known for its medicinal properties as well as use in various cuisines. The compound itself was used to embalm corpses in ancient Egypt. More recently, it has been recognised as a promising anti-prostate cancer lead. However, before a molecule can be used to develop drugs, a successful synthesis must be developed.

Pistacia lentiscus

Mastic gum (from Pistacia lentiscus, pictured) has been used for many applications, from treating snakebites to tooth whiteners. © Science Photo Library

Alejandro Barrero and his group at the University of Granada have done just that. Their synthesis starts with (–)-sclareol, a bicyclic diterpene alcohol isolated from clary sage (Salvia sclarea). It then proceeds through a key C–H oxidation step, which is achieved with cytochrome P450 enzyme catalysis by incubating a reaction intermediate with the fungus Mucor plumbeus.

By cultivating clary sage, Barrero can sustainably produce (–)-sclareol, meaning (+)-myrrhanol C can be made on a large scale that is also environmentally friendly.

However, the use of natural products and processes in the synthesis also gives another important benefit to the synthetic strategy. ‘Apart from using a natural chiral synthon as starting material, the only process generating a new chiral centre is the microbial hydroxylation,’ explains Barrero. This means the researchers could carefully control the stereochemistry of the synthetic product, which could be very important for clinical applications. ‘The selectivity [for the (+) isomer] of our synthesis is total,’ he concludes.

Bob Hill, a natural products expert at the University of Glasgow, welcomes the synthesis of (+)-myrrhanol C even though he is not enthused by the chemistry. ‘They seem to have produced a reasonably good synthesis (using established methodology) to a potentially useful compound,’ he says.

Barrero says that the next step is to investigate synthetic analogues and their antitumour activity with a view to drug discovery.


Related Content

The sultan of synthesis

11 April 2014 Feature

news image

Phil Baran is spurring organic chemists to rethink how they make complex compounds, as Mark Peplow discovers

Stepping toward ideality

6 July 2012 Premium contentFeature

news image

James Mitchell Crow wonders what would make the perfect organic synthesis

Most Read

Higher levels of some metals in e-cigarette smoke

8 September 2014 Research

news image

Scientists call for regulators to help clear smoke and mirrors surrounding vaping safety

Bringing chemical synthesis to the masses

7 September 2014 Research

news image

Researchers hope simple system to build thousands of peptides without enzymes, cells or reagents will be accessible to all

Most Commented

Higher levels of some metals in e-cigarette smoke

8 September 2014 Research

news image

Scientists call for regulators to help clear smoke and mirrors surrounding vaping safety

Does life play dice?

3 September 2014 The Crucible

news image

Philip Ball wonders whether life evolved to exploit quantum phenomena, or if it’s just in our nature