Quasar hydrogen found


US astronomers have detected large amounts of neutral hydrogen and a lack of elements heavier than helium in a quasar thought to by in an exceptionally young part of the universe.

The quasar in question (ULAS J1120+0641) was discovered in 2011 and has a redshift (z) of 7. A star's redshift is a measure of how far its electromagnetic emissions are shifted towards the red end of the spectrum and is caused by the quasar moving away from the point of observation, in this case Earth, as the universe expands. With z = 7, the light coming from the quasar represents a time when the universe was just 772 million years old (about 5.6% of its current estimated age).

The infrared spectral analysis performed by Robert Simcoe’s group at the Massachusetts Institute of Technology, Cambridge, used measurements from the Magellan Baade telescopes in Chile. The analysis shows that the hydrogen around the quasar had not been ionised by starlight, nor was it enriched in the heavier element products of fusion in the later lifetimes of stars.


Related Content

Is all matter made of just one element?

2 April 2015 Premium contentFeature

news image

William Prout’s answer to this perennial question launched two centuries of controversy. Mike Sutton reports

Reading between the lines

26 November 2009 Feature

news image

We will surely never solve all the mysteries of the universe. But, as Jon Cartwright reports, spectroscopy holds the key to u...

Most Read

Flushing advice is flawed

24 August 2015 Research

news image

Protocols to restore contaminated water supplies are not based on science

Simple chemistry saving thousands of gold miners from mercury poisoning

25 August 2015 News and Analysis

news image

Basic apparatus is cutting mercury pollution and helping Indonesian miners go for gold

Most Commented

New drug treatment for alcoholism shows promise in animal studies

24 August 2015 Research

news image

Compounds that target a receptor in the brain appear less addictive with fewer negative side-effects than existing drugs

A risky business

28 August 2015 In the Pipeline

news image

Graduate research is likely the most risky time of a chemist’s career, says Derek Lowe