Antifreeze protein's watery dance


The antifreeze protein (blue) changes the dynamics of water on the ice-binding surface owing to threonine residues (green) © Konrad Meister

Most animals left in -30°C temperatures wouldn't last very long. Not only would they get hypothermia, but the water in their bodies would start to freeze. Some animals and plants, however, use antifreeze proteins to keep ice at bay. It had been thought that these antifreeze proteins just interact with nano-sized ice crystals, binding to them and preventing the crystals from growing any bigger. Research from Ruhr University in Germany, in collaboration with US scientists,  now suggests a second way that these proteins protect against freezing, by affecting the organisation of water molecules up to seven layers away from the ice-binding site.

Martina Havenith and her colleagues examined an antifreeze protein from the fire-coloured beetle Dendroides canadensi as it is much more potent than similar proteins found in fish. After dissolving the protein in water, the group used terahertz spectroscopy and computer simulations to watch the long-distance action of the protein on the water molecules.


Related Content

Survival in the freezer

2 May 2013 Premium contentFeature

news image

How do animals survive in the extreme cold? James Mitchell Crow investigates

Ice core to antifreeze protein’s inner workings

13 February 2014 Research

news image

Highly unusual structure has an interior filled with a pentagonal ice network that halts the formation of ice crystals

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint