Crystals aim to light up dark matter


calcium tungstate

Calcium tungstate crystals, formed at around 1600°C, can be used to detect dark matter © Andreas Heddergott/TU Munich

German scientists hunting dark matter are set to produce half a tonne of high-purity calcium tungstate for their detectors, one 1kg crystal at a time. The CRESST-II experiment based in Gran Sasso, Italy is currently seeking this enigmatic substance, thought to explain the universe’s structure, with 10kg of calcium tungstate (CaWO4). Now Andreas Erb and Jean-Côme Lanfranchi are preparing crystals for its larger successor EURECA, which will begin operation in the French Alps in 5–10 years.

Gravitational effects suggest as-yet-unobserved dark matter in the universe outnumbers more familiar atomic matter four to one. Erb, Lanfranchi and their colleagues are hunting leading theoretical candidates, Weakly Interacting Massive Particles (WIMPs). That name reflects their size – up to a lead atom’s mass – and the limited interaction with atomic matter that makes them hard to find, or ‘dark’. ‘They have to interact weakly to agree with the matter needed,’ says Richard Gaitskell from Brown University in the US, who isn’t involved in the calcium tungstate experiments.

Erb explains that the detectors should be able to pick up dark matter particles when they hit atomic nuclei in the crystals. ‘A higher sample mass gives a higher probability of such events.’ But distinguishing the miniscule amount of heat WIMP–nucleus collisions would produce requires detectors cooled to 10mK and shielded from ambient radioactivity.

CRESST/EURECA is the only team hunting dark matter with calcium tungstate, which has two advantages. Firstly, its different atoms cover a range of possible WIMP masses. ‘No matter the mass, you always have a nucleus with a high probability of interacting,’ Erb says. Second, it would also emit light when a WIMP hits it and monitoring the different signals will help the scientists eliminate background noise. 

Having initially purchased crystals, this need for extreme sensitivity drove Erb and Lanfranchi to produce their own. ‘They weren’t pure enough for the background we want,’ Erb recalls. To avoid oxidation at calcium tungstate’s 1600°C melting temperature, the crucibles are made from rhodium, with their 12cm diameter vessel costing €120,000 (£97,300). Erb says that if they can grow two or three 1kg crystals per week then they will have the required amount for EURECA in about five years.


Related Content

News in Brief

28 January 2010 News Archive

news image

Short items, February 2010

Wollaston’s reflective goniometer

3 September 2014 Classic Kit

news image

It is better to travel than to arrive

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint