Enzyme draws nanopore protein sequencing nearer


unfoldase

The tail (yellow) brings the protein to the pore where the unfoldase grabs the tag (red) and drags the protein through the pore © NPG

US scientists at the University of California, Santa Cruz, have made a key step towards nanopore protein sequencing, thanks to an ‘unfoldase’ enzyme. Mark Akeson’s team exploited this enzyme to unravel proteins and pull them through nanopores.

Though DNA sequencing techniques relying on similar nanopore-based processes are emerging that read longer fragments than predecessor technologies, there’s no equivalent yet for proteins. And while sequencers remain remote, the researchers see similar potential in their findings. ‘Protein translocation control for bench-top sequencing applications will require technical improvements,’ they write. ‘This is worthwhile because an optimised nanopore device could provide long reads of individual native protein strands.’

While important for biological function, proteins’ secondary and tertiary structures must be unfolded to pass them through a nanopore for any attempt at sequencing. In Escherichia coli the enzyme ClpX draws proteins through a nanopore into a chamber where they’re degraded. Akeson’s team realised it applies enough force to proteins to break down stable folds, and pull a protein through a pore fast enough to potentially be used in sequencing. So they put ClpX on one side of a lipid bilayer containing an α-haemolysin nanopore and put folded proteins with a trailing peptide tail on the other. They put a sequence known to target ClpX on the end of the tail. The peptide tail also contained a long sequence of negatively charged amino acids, which draws the protein to the pore when they applied a current across it.

When the team applied a current, ions flowed through the nanopore and they saw the ionic current vary as a protein passed through. The changes showed that the protein moved to the pore, with the tag poking through to the other side. ClpX bound the tag and moved along the chain, forcing the folded protein against the nanopore. That force and the pore’s electric field unfold the protein, allowing ClpX to pull the whole chain through. The team hope that these changes in the current could ultimately identify amino acid sequences.

‘This unusually strong work has considerable potential for use in biotechnology,’ says Hagan Bayley, at the University of Oxford, UK, who founded nanopore DNA sequencing company Oxford Nanopore. However, he calls using the approach for protein sequence determination ‘a distant dream’. ‘There may be more immediate applications such as analysing polypeptides produced by alternative splicing, an important source of protein variation,’ he adds.

 


Related Content

The enzyme hunters

27 February 2015 Premium contentFeature

news image

Novozymes is scouring the world for enzymes that make industrial processes more sustainable, as Mark Peplow discovers

Sequencing in the fast lane

25 July 2012 Premium contentFeature

news image

Phillip Broadwith gets up to speed with the latest developments in DNA sequencing technology

Most Read

Mystery of coloured water droplets that chase and repel each other solved

19 March 2015 Research

news image

Discovery could herald sprays that hoover up dirt and keep solar panels clean

Simple cooking changes make healthier rice

23 March 2015 Research

news image

Adding oil to water, cooling and reheating rice makes fibre-like resistant starch, reducing calories

Most Commented

Worrying molecule found in bottled water

9 September 2013 Research

news image

Analysis finds a new endocrine disrupting chemical in bottled water

Impatient chemistry

28 February 2014 Last Retort

news image

Is the pressure to publish making chemists cut corners?