Microbial mobilisation may offer arsenic solution

arsenic well

As many as 1 in 5 deaths in Bangladesh may be down to arsenic contaminated water © European Pressphoto Agency/Alamy

New work examining arsenic contamination of groundwater in Bangladesh could help people work out where to sink wells to provide safe drinking water. By tracing how arsenic gets into drinking water the scientists concluded that natural processes were too blame, rather than human disturbance of groundwater.

Contamination of groundwater by naturally occurring arsenic salts has been an insidious environmental problem affecting millions of people across the Indian sub-continent for decades. The issue was first brought to the attention of the scientific community in the 1980s and to public attention as late as the 1990s.

There are numerous explanations for why previously insoluble salts should be solubilised and released into the water where they cause chronic poisoning and trigger many cancers. The iron reduction hypothesis is currently favoured. When iron oxides are present the arsenic remains adsorbed to the iron but reduction removes this sorbent enabling mobilisation. There is an apparent link between reductive dissolution of these iron oxides coupled to microbial respiration of organic carbon compounds in the groundwater. But the source of the organic carbon – whether it is simply present in sediments or whether it has an anthropogenic origin – has been hotly debated.

Brian Mailloux at Barnard College, in New York, US, and colleagues have investigated the carbon-14 signature of microbial DNA isolated from groundwater samples in order to reveal the importance of surface and sediment-derived organic carbon. Their findings show a gap of several years in the carbon-14 trace between samples from deep aquifers, whereas the samples from shallow water sources are much younger. What this means is that rather than being driven by modern anthropogenic carbon sources, the solubilisation of arsenic in the deep aquifers used for village, tubewells, is a much older, natural process.

This knowledge should help planners make rational decisions on sourcing drinking water based on whether or not there is a flow of organic carbon into the deep aquifers. If there is not, then such sites should be safer as the mechanism for arsenic solubilisation will not be active. Nevertheless, the findings also caution against sourcing water where anthropogenic carbon might trigger the release of soluble arsenic into shallower water.

Geomicrobiologist Jonathan Lloyd of the University of Manchester, UK, explains that there is a consensus view that anaerobic metal-reducing bacteria play a significant role in arsenic mobilisation. ‘An advantage of the present approach, which targets purified DNA, is that advanced environmental genomics techniques can also be used to characterise the microbial communities in some detail, suggesting for example the sort of biogeochemical processes.’ He adds: ‘It will be interesting to see if the technique can be adapted to look at the microbes attached to the sediments, which are most likely intimately involved in arsenic mobilisation.’

Related Content

Digging deep for safer water

27 March 2014 Premium contentFeature

news image

Arsenic-laced water is still poisoning millions of people in Asia. Nina Notman looks to see if an end is in sight

Hope for arsenic free water from deep underground

11 October 2011 News Archive

news image

Sediment deep underground could protect communities from water contaminated with arsenic by locking the toxic element away

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

Smart skin for prosthetic limbs senses heat and touch

12 December 2014 Research

news image

Ultra-thin plastic skin can bend and flex without affecting the skin's ability to detect stimuli

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint