High-capacity MOF shows clean fuel promise

Vehicles powered by natural gas are cleaner than those running on petrol, and are of increasing interest to those living in countries that have to import oil.  But the high pressures at which gas must be stored require expensive materials and distribution infrastructures, as well as radically different vehicle designs.

Metal organic frameworks (MOFs) could be the answer to the problem. These materials – which comprise metal ions connected by organic linkers – are able to store high quantities of gas at lower pressures than are required by traditional gas cylinders, for example. But their low capacity and the scale on which they can be synthesised have prevented their practical use so far.However, a Cu(II)-based MOF, made independently by scientists at both the University of Nottingham, UK and Northwestern University in Evanston, Illinois, US, could change this.1,2

Omar Farha, Radnell Snurr and Joseph Hupp at Northwestern, along with Taner Yildirim of the National Institute of Standards and Technology in Gaithersburg, Maryland, have synthesised the new MOF in gram-scale quantities and established it has 67% of the deliverable storage density of gas cylinders, but at only a quarter of the pressure.

‘What this [reduction in pressure] is going to do is reduce the compression cost,’ explains Farha. ‘The infrastructure will become cheaper – you won’t need compressors to compress natural gas up to 250 bar.’

Farha’s research team designed the material by considering the criteria that were needed. The proposed structure consisted of copper ions connected by new hexa-carboxylic acid linkers, which provides greater porosity than MOFs made with conventional linkers. A computer simulation was then used to confirm that the material could deliver the required properties before scaling up and synthesis was carried out.

The researchers tested the material’s stability by repeated adsorption–desorption cycling over the course of a month, which revealed no degradation in performance. Isotherms were also measured on larger scales, using a gram of the MOF, and the physical properties found to be the same. ‘This suggests the material can be activated very well,’ comments Farha.

Russell Morris, of the University of St Andrew’s, UK, praises the researchers’ achievements: ‘I think the capacity is pretty much getting near to being enough,’ he says, but warns that the researchers need to explore the effects of impurities and stability over longer periods. Farha agrees, revealing this is the group’s next step, along with optimisation of the deliverable gas capacity even further.

Martin Schröder, who leads the Nottingham group, also has doubts over real-world practicality: ‘Any gas stored would have to be very pure to prevent the material degrading. This undoubtedly adds complexity and cost to the production and distribution of such a potential fuel.’



1  Y Yan et al, Chem. Sci., 2013, 4, 1731 (DOI: 10.1039/c3sc21769h)

2  C E Wilmer et al, Energy Environ. Sci., 2013, DOI: 10.1039/c3ee24506c

Related Content

MOF smashes gas storage ceiling

28 August 2012 Research

news image

Recording-breaking metal organic frameworks adds weight to idea that they can mop up much more gas than previously thought

Hydrogen's false economy

14 March 2013 Critical Point

news image

Hydrogen-powered cars are not going to save the world, and the sooner we realise it the better, argues Mark Peplow

Most Read

Yeast turned into morphine and opioid biofactories

24 August 2014 Research

news image

Scientists hope that biotech route could protect the drug supply chain from harvest failures and problems with illicit use

No-frills coats set a trend for designer viruses

26 August 2014 Research

news image

An artificial protein that self-assembles around and protects DNA could be ideal for gene therapy, nanomachines and synthetic...

Most Commented

The energy to fight injustice

23 July 2014 Comments

news image

Giving the world carbon-free energy means putting nuclear energy back on the agenda, says James Hansen

Next Mars rover will make oxygen from CO2

4 August 2014 News and Analysis

news image

Mars 2020 will set Nasa’s space exploration on a self-sufficiency course