Removing toxic chemicals with POPs

The filters used in gas masks, which give protection against toxic industrial chemicals, are often large and cumbersome, being made from activated carbon that is impregnated with metal salts. In a search for alternatives, SonBinh Nguyen and colleagues at Northwestern University, Evanston, Illinois, have joined forces with scientists at the Edgewood Chemical Biological Center, Maryland, to investigate a series of porous organic polymers (POPs) bearing metal-catecholate groups. By changing the molecular components used in their synthesis, the materials have been tailored to hydrogen bond to, and consequently eliminate, specific toxic industrial chemicals, like ammonia.

‘Metal-organic frameworks (MOFs) have the same customisable characteristics as POPs, and have been investigated for their ability to remove toxic chemicals,’ says Nguyen. ‘Yet many of the MOFs known today are not very stable, owing to the prevalence of metal-oxygen bonds, and will degrade in the presence of atmospheric moisture. POPs, on the other hand, contain carbon-carbon bonds, which are less susceptible to moisture attack,’ he explains.

Hani M. El-Kaderi, of Virginia Commonwealth University, Richmond, Virginia, US who designs porous polymers for a variety of applications, applauds the way the new POPs were fabricated to ‘specifically address the chemical-stability limitations encountered for metal-organic frameworks… without compromising gas uptake under practical settings.’

Organic materials scientist Neil McKeown, from the University of Cardiff, adds that Nguyen’s study demonstrates the potential of microporous polymers to adsorb toxic chemicals from air. ‘This synthetic versatility may ultimately result in polymer adsorbents that are better than the present state-of-the-art activated-carbon materials, for specific target chemicals.’ he says.

Nguyen is excited about the future for POPs, speculating that any chemical can be filtered from the air providing the proper chemistry is incorporated into the structure. ‘Porous organic polymers… can have large surface areas, making them suitable for gas storage, or unique chemical motifs tailored toward light-harvesting applications, chemical separations and catalysis,’ he says. ‘The challenge now is to merge these highly desirable features together to generate robust, tunable materials that can be tailored for different applications.’


M H Weston et al Chem. Commun., 2013, 49, 2995 (DOI: 10.1039/c3cc40475g)

Related Content

If everything is chemistry then I need to do chemistry

2 August 2013 Research

news image

Cafer Yavuz talks to Jennifer Newton about carbon dioxide capture and why he is frustrated with MOFs

Stationary phases move ahead

31 October 2012 Premium contentFeature

news image

What’s in those columns? Jon Evans looks at the sophisticated materials in chromatography

Most Read

US government science institute's one time police chief linked to campus meth lab

31 July 2015 News and Analysis

news image

Explosion injuring a member of the National Institute of Standards and Technology's security force uncovered methamphetamine ...

Antifreeze polymer protects cells as they thaw

29 July 2015 Research

news image

Simple synthetic polymer found to enhance cryopreservation of red blood cells by inhibiting ice crystal growth

Most Commented

Philae poses comet chemistry conundrum

30 July 2015 Research

news image

Historic mass spectra find 67P carries precursors to key biomolecules, but instruments detect different ones

Butterfly population collapse prompts lawsuit against EPA

5 March 2015 News and Analysis

news image

US agency criticised for failing to investigate link between glyphosate and the dwindling monarch butterfly population