Reducing the cost of perovskite solar cells


A new way of making semiconducting perovskite-based solar cells could result in photovoltaic devices that are 70% cheaper than current commercial models, say UK scientists.

Solar cells are already beginning to enjoy widespread adoption © Shutterstock

Although dye-sensitised solar cells (DSSCs) have been leading the charge in cheap-to-process cell designs, semiconducting perovskites have been used in recent years to replace the sensitiser in the DSSC architecture. Whilst this reduces the interfacial energy loss that plagues DSSCs, the metal oxide support layers still need to be sintered at 500°C, which is costly.

Continuing their work on a ‘meso-superstructured’ solar cell, where they simplified the design of semiconducting perovskite solar cells, Henry Snaith and his group at the University of Oxford have used colloidal chemistry to deposit a support layer of aluminium(III) oxide. The highest temperature this method needs is a 150°C drying step, which will not only result in cheaper devices, but could also lead to better designs.

Multijunction solar cells, with one cell synthesised directly on top of another, are a cheap way to improve device efficiency further as the two cells can specialise in different parts of the solar spectrum. Snaith says this would not be possible using earlier synthetic methods. ‘You can’t do any treatment that will disrupt the solar cell underneath and the main treatment that disrupts solar cells is temperature,’ he explains.

Neil Greenham, an expert in optoelectronics at the University of Cambridge, UK, says that the researchers’ previous work, which essentially replaced titanium dioxide with aluminium(III) oxide, allowed these new improvements. ‘Because [the Al2O3] is just essentially acting as an inert scaffold, the processing of those layers becomes less important, so they can get away with a much lower annealing temperature for those materials,’ he explains.

‘It’s more than just tweaking, these are rather important extra results,’ adds Greenham.

Although his device’s 12.3% efficiency is enough to rival the very best dye-sensitised solar cells, Snaith is still looking to improve efficiency, as well as stability, on his way to producing a commercial device.

Snaith is already predicting that his device will be much cheaper than existing silicon ones. ‘We’ve costed it out and we think, at our first level of manufacturing scale, it’ll be something like 30 cents per Watt peak. Current silicon is about $1 per Watt peak.’ ‘The main cost is actually going to be the glass,’ he concludes, ruefully.

References

J M Ball et al, Energy Environ. Sci., 2013, DOI: 10.1039/c3ee40810h


Related Content

The power of perovskites

22 August 2014 Premium contentFeature

news image

Andy Extance finds out how the efficiency of perovskite solar cells has risen so quickly

Perovskite solar cells show hydrogen production promise

26 September 2014 Research

news image

Highly efficient solar cells and catalysts made from cheap, common materials use sunlight to split water

Most Read

Isotope effect produces new type of chemical bond

22 October 2014 Research

news image

Evidence emerges for vibrational bond first proposed 30 years ago

Not all science is created equal

16 October 2014 Comments

news image

John Ioannidis explains why researchers should be curious about the differences between disciplines

Most Commented

UCLA spent $4.5 million on legal costs in Sangji case

20 October 2014 News and Analysis

news image

University defends spending in case brought against chemistry professor, highlighting $20 million investment in lab safety

Not all science is created equal

16 October 2014 Comments

news image

John Ioannidis explains why researchers should be curious about the differences between disciplines