Inorganic nanosheet to enhance batteries


© Shutterstock

A graphene inspired electrode material that could help batteries hold more power has been developed by Chinese scientists. The large surface area of these cobalt oxide nanosheets is key to their electrochemical performance.

Batteries are a cornerstone of modern life with most smartphones and laptops using rechargeable lithium ion batteries. As technology advances, the search is on for batteries that can pack more energy into the same space.     

Graphitic electrodes are commonly used in lithium ion batteries but suffer from low theoretical capacity. A viable alternative is to use metal oxides which have significantly higher theoretical capacities but in practice are limited by their inability to hold more lithium ions. Recently nanostructures have been developed that can hold more lithium ions but the swelling and shrinking from charge–discharge cycles damages the electrode and greatly reduces its capacity, a problem known as pulverisation.

Yi Xie and her team from the University of Science and Technology of China, Hefei, have bypassed these issues using an inorganic analogue of graphene. They fabricated atom-thick sheets of cobalt oxide via a topochemical method. Xie says the structure of the analogue allows for ‘huge surface areas, facile lithium ion diffusion and electron transport, as well as open channels that buffer large volume variation during cycling processes’. All of these factors contribute to its significant electrochemical performance and high cyclability in comparison with previous Co3O4 nanostructures.

‘Exploiting nearly the full outstanding capacity of conversion anodes for lithium batteries at good capacity retention has been a longstanding goal for which this work offers an interesting approach,’ comments Stefan Freunberger, an expert in electrochemical energy storage materials at Graz University of Technology, Austria. However, he warns that translating such performance into a device remains a tough challenge.

Xie also says that the technology is still in the early stages of development. Next, she plans to experiment with other inorganic graphene analogues using other materials to achieve even better energy storage properties.

References

J Zhu et al, Nanoscale, 2013, DOI: 10.1039/c3nr01178j


Related Content

Disorder opens up battery material field

9 January 2014 Research

news image

Discovery overturns conventional wisdom that well-ordered materials are a must for better lithium-ion battery electrodes

Up in the air

23 November 2012 Premium contentFeature

news image

Philip Ball looks at the recent progress in lithium–air battery research - has it stalled?

Most Read

First ionic liquid made from plant waste

27 August 2014 Research

news image

Closed loop recycling could see ionic liquids made from biofuel by-products used to make more biofuel

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...

Most Commented

Peak oil is not a myth

20 February 2014 Comments

news image

Fracking won’t plug the gap in crude oil’s falling figures, says Chris Rhodes. Oil’s exhaustion is inevitable

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...