Inorganic nanosheet to enhance batteries


© Shutterstock

A graphene inspired electrode material that could help batteries hold more power has been developed by Chinese scientists. The large surface area of these cobalt oxide nanosheets is key to their electrochemical performance.

Batteries are a cornerstone of modern life with most smartphones and laptops using rechargeable lithium ion batteries. As technology advances, the search is on for batteries that can pack more energy into the same space.     

Graphitic electrodes are commonly used in lithium ion batteries but suffer from low theoretical capacity. A viable alternative is to use metal oxides which have significantly higher theoretical capacities but in practice are limited by their inability to hold more lithium ions. Recently nanostructures have been developed that can hold more lithium ions but the swelling and shrinking from charge–discharge cycles damages the electrode and greatly reduces its capacity, a problem known as pulverisation.

Yi Xie and her team from the University of Science and Technology of China, Hefei, have bypassed these issues using an inorganic analogue of graphene. They fabricated atom-thick sheets of cobalt oxide via a topochemical method. Xie says the structure of the analogue allows for ‘huge surface areas, facile lithium ion diffusion and electron transport, as well as open channels that buffer large volume variation during cycling processes’. All of these factors contribute to its significant electrochemical performance and high cyclability in comparison with previous Co3O4 nanostructures.

‘Exploiting nearly the full outstanding capacity of conversion anodes for lithium batteries at good capacity retention has been a longstanding goal for which this work offers an interesting approach,’ comments Stefan Freunberger, an expert in electrochemical energy storage materials at Graz University of Technology, Austria. However, he warns that translating such performance into a device remains a tough challenge.

Xie also says that the technology is still in the early stages of development. Next, she plans to experiment with other inorganic graphene analogues using other materials to achieve even better energy storage properties.

References

J Zhu et al, Nanoscale, 2013, DOI: 10.1039/c3nr01178j


Related Content

Disorder opens up battery material field

9 January 2014 Research

news image

Discovery overturns conventional wisdom that well-ordered materials are a must for better lithium-ion battery electrodes

Up in the air

23 November 2012 Premium contentFeature

news image

Philip Ball looks at the recent progress in lithium–air battery research - has it stalled?

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint