Kelvin’s water dropper miniaturised on a chip

European scientists have modified an old experiment and converted pneumatic pressure into electrical power, which could one day help power microfluidic devices.

In 1867, William Thomson (Lord Kelvin) invented his classic water dropper to demonstrate how charges can be spontaneously created in clouds. But, the device has remained little more than a classroom demonstration and its potential to deliver useful electrical energy has remained unrealised.

In the classic experiment water streams are dropped through conducting rings into buckets below. The buckets and rings are electrically connected and once a spontaneous charge exists in one system the droplets help amplify the effect until a big enough voltage is created for sparks to form between the two charged bodies.

Hoping to use the same principle to power microfluidic devices, a group of scientists across Europe have miniaturised the Kelvin water dropper down to just larger than a coin. The team, including Álvaro Marín (currently at Bundeswehr University Munich, Germany), made the microfluidic version with two drop generators and a pair of electrodes on each side acting as induction electrodes. The device charges picolitre sized droplets at a rate of 103 droplets per second, using pneumatic force to move the droplets within a microfluidic chip instead of gravity. A second pair of electrodes further down the stream receives the charge, creating a potential difference.

So far, the system has created currents in the order of 0.5 nA and Marín explains that ‘the scale-up would be relatively easy to do by simply adding more microfluidic modules.’ This could improve energy conversion and make useful electrical energy output a reality.

Thomas Jones, a leading researcher in microelectromechanical systems and droplets at the University of Rochester in the US says he believes ‘the microfluidic Kelvin dropper may prove to be an icon of microelectromechanical possibilities.’ Jones also adds the device ‘may lead to the development of on-chip high voltage supplies to drive electrowetting and liquid dielectrophoresis devices.’

However, energy generation is just one possible application of the work, says Marín. As well as droplet charging, droplet break up can be induced and by altering the configuration of the electrodes and microfluidic channels, the degree of charging or break-up can be controlled. This suggests the dropper could also be used to seperate ionic species for analysis or to help physicists explore the droplet breakup effect.

Having built a prototype to demonstrate the phenomenon, Marín acknowledges that the challenge is to quantitatively measure the charging state of the droplets and how that can be changed by different parameters

Related Content

Chemistry World podcast - February 2014

5 February 2014 Podcast | Monthly

news image

This month, alternatives to animal testing and exploring actinide chemistry

Chemistry World podcast - March 2014

4 March 2014 Podcast | Monthly

news image

This month, synthetic DNA bases and chemistry using smartphones

Most Read

No-frills coats set a trend for designer viruses

26 August 2014 Research

news image

An artificial protein that self-assembles around and protects DNA could be ideal for gene therapy, nanomachines and synthetic...

History of King Richard III written in his teeth

18 August 2014 Research

news image

Chemical analysis of isotope signatures in monarch's remains provide insight into his life

Most Commented

The energy to fight injustice

23 July 2014 Comments

news image

Giving the world carbon-free energy means putting nuclear energy back on the agenda, says James Hansen

Next Mars rover will make oxygen from CO2

4 August 2014 News and Analysis

news image

Mars 2020 will set Nasa’s space exploration on a self-sufficiency course