Microscopy and spectroscopy combined

US researchers have developed a new imaging technique which combines the spatial resolution of scanning tunneling microscopy (STM) with vibrational information obtained from infrared (IR) spectroscopy. The technique can simultaneously image and obtain the IR spectrum for small amounts of molecules adhered to a surface.

Detecting and identifying molecules on a surface and understanding how they interact with the surface and each other is crucial for altering the surface’s properties and creating new nanostructures that might have useful applications, including electronic nanodevices.

IR spectroscopy gives much of the required molecular information by measuring the vibration of molecules on a surface, which acts like a molecular fingerprint. However, since IR has no spatial resolution, there has been a desire make it sensitive enough to detect single molecules and so achieve greater control at the nanoscale.

Efforts have previously been made to achieve this by providing STM with chemical sensitivity using vibrational spectroscopy. But such techniques, including STM-based inelastic tunnelling spectroscopy (IETS), had certain drawbacks and so never took off.

Researchers at the Lawrence Berkeley National Laboratory, in Berkeley, California, and at the University of California at Berkeley and Stanford University, California, have devised a technique that overcomes previous limitations by using STM as a sensitive detector to probe the IR response of submonolayers of molecules on conducting crystals. Although it has not yet achieved detection of single molecules, the researchers suggest it shows promise.

'I think that what allowed this new technique is advances in tunable IR lasers. To perform this kind of measurement we must sweep the frequency of a highly stable and reasonably bright IR laser. This was not so easily possible in the past,' says Michael Crommie who led the work.

A tunable IR laser is shined into the STM to vibrationally excite molecues on the gold surface

The team built a stable, tunable IR laser that can sweep its frequency through the C–H stretch mode frequency and connected this to a low temperature ultrahigh vacuum STM. They then prepared a clean crystal surface deposited onto gold to test the imaging technique.

'We simply shined the laser light through a viewport and measured the STM tip height as a function of the laser frequency. Much of the development went into getting the laser right, and into making sure that we understood the nature of the STM signal that we are measuring,' explains Crommie.

'So far the authors have achieved the detection of IR signal from monolayers and submonolayers. This is an achievement,' comments Stefan Tautz, a molecular imaging expert at the Jülich Research Centre in Germany.' If it was possible to extend this to nanometre scale or even single molecule resolution, this would be a breakthrough for chemically sensitive STM with many applications in surface chemistry.'

'One of our most important goals is to increase the signal-to-noise of the technique to allow nanoscale spatial resolution of the direct molecular IR response,’ Crommie adds. ‘Eventually we would like to be able to directly image how individual molecules vibrate in response to IR light excitation, although we are not there yet.’ 


Related Content

Picture perfect pentacene

5 January 2011 Premium contentFeature

news image

Advances in microscopy are letting us see not just atoms but the chemical bonds in between them. James Mitchell Crow takes a ...

Unusual H-bond patterns revealed in single molecule image

27 May 2014 Research

news image

Hydrogen atoms in a molecule of cobalt phthalocyanine appear to be ‘shared’ between multiple centres

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Unusual 2D silica allotrope predicted

25 June 2014 Research

news image

Simulations say graphene-like silica would become thicker when stretched