Enhancing photopigment formation to boost biofuel production


Chlorophyll formation was enhanced when algae were grown in a flask surrounded by a solution of gold and silver nanoparticles

Scientists in Australia have developed a nanoparticle light filter system that only lets through wavelengths favourable for microalgae growth. The system could make producing algal biofuels more efficient.

Photosynthetic systems, particularly microalgae, are at the forefront of the search for new renewable fuels and feedstock chemicals. The speed and efficiency at which microalgae grow is currently limiting them from becoming a commercially viable product so optimising their production is obviously a priority.

Colin Raston from Flinders University and his co-workers at the University of Western Australia have developed a new technique to enhance the formation and accumulation of photopigments, namely chlorophyll, in algae. They cultured Chlorella vulgaris in flasks that were surrounded by a solution of gold and silver nanoparticles. Tweaking the composition and size of the nanoparticles alters the wavelengths of light allowed through to the algae.

Although light is essential for photosynthesis, excess light can damage the algae and have a negative impact of photosynthesis. Raston’s technique limits the harmful wavelengths reaching the algae whilst harnessing the backscattering of wavelengths that boost photopigment formation. More chlorophyll, means more light can be captured and used to generate biomass.

As the nanoparticles are not in direct contact with the algae there are no concerns regarding contamination.

Janet Scott, an expert in sustainable chemical technologies at the University of Bath in the UK, says the technique is a wonderful piece of lateral thinking. Although the concept is not ready for commercial application just yet, ‘the concept is exciting and points to interesting possibilities for exploiting the phenomenon,’ she adds.

Scott’s sentiments are shared by Evan Beach, program manager for Yale University’s Center for Green Chemistry and Green Engineering in the US. He also comments that ‘algae-to-energy technologies will only be feasible through a “biorefinery” approach in which fuels are produced alongside higher-value products.’

Raston’s team now want to test their method on other photosynthetic organisms.


Related Content

Lean green microbe machines

30 April 2013 Feature

news image

For its proponents, algae hold the promise of a clean source of fuel, food or drugs. Anthony King wades in

Aaron Wheeler: Algae-on-a-chip

22 July 2014 Research

news image

Aaron Wheeler talks to Harriet Brewerton about bringing the energy and microfluidics communities together

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint