Paper device spots antibiotic-resistant bacteria


 

Scientists in Canada have developed a paper-based device that checks if bacteria are resistant to certain antibiotics. The simple system could help users in remote areas pick the most appropriate treatment for bacterial infections.

Testing bacteria to see which antibiotics will be effective against them is vital for properly medicating patients. Methods exist to assess bacteria but the equipment needed is often expensive and requires highly trained operators and laboratory conditions. Now, Ratmir Derda and colleagues at the University of Alberta have designed a portable device made from paper and other low-cost materials. The team sought the help of high school students to make and test the devices to show how easy they are to construct and use.

Derda’s device consists of a paper support with a clear plastic window over an area of nutritious media permeated into a sheet of thick blotting paper. This culture media has a uniform pattern of hydrophobic spots to ensure samples disperse evenly across it. Two zones of antibiotics are added onto the media before the device is sterilised in an autoclave. After autoclaving, a cell viability dye is dropped on the culture media and the bacterial sample is then added on top of the dye. Finally, the device is sealed and incubated overnight.

In areas with no bacterial growth the dye remains blue and in areas where bacteria do grow the dye turns pink. The colours are easy to see through the device’s plastic window – there is no need to open the device. A blue area around the antibiotic zones indicates that the bacteria are susceptible to the antibiotics. The hydrophobic spots on the culture media aid quantification of the blue area to give an idea of how sensitive the bacteria are to the antibiotics.

Preparing and using the device is simple. (M: culture media; A: antibiotic zone; C: culture zone)

‘This work shows that living microorganisms can be grown and screened for antibiotic resistance using paper devices that are small and light enough to store in a person's pocket,’ says Marya Lieberman, an expert in paper-based sensors at the University of Notre Dame in Indiana, US.

The team also found that the device could easily be stored long-term. After assembling to the point that it contained the culture media and antibiotics, it could be left for up to 70 days in a sealed bag. This storage ability along with the device’s cheap components and ease of use make it very promising for use in remote areas.


Related Content

Re-arming the antibiotic arsenal

26 September 2013 Feature

news image

How can we make new antibiotics? Phillip Broadwith takes a look

Dual warhead kills and disarms bacteria

29 May 2014 Research

news image

Compound damages bacterial membrane and disables resistance mechanism in a two-pronged attack

Most Read

No-frills coats set a trend for designer viruses

26 August 2014 Research

news image

An artificial protein that self-assembles around and protects DNA could be ideal for gene therapy, nanomachines and synthetic...

First ionic liquid made from plant waste

27 August 2014 Research

news image

Closed loop recycling could see ionic liquids made from biofuel by-products used to make more biofuel

Most Commented

3D printing cuts fuel cell component costs

4 July 2014 Research

news image

Hardware hackers encouraged to exploit new manufacturing approach in open source schemes

Next Mars rover will make oxygen from CO2

4 August 2014 News and Analysis

news image

Mars 2020 will set Nasa’s space exploration on a self-sufficiency course