RNA mimic destined for synthetic genome


synthetic polymer

© Carol and Mike Werner/Alamy

US scientists have taken another step towards the goal of creating self-replicating molecules like those thought to have spawned life on Earth. The researchers made RNA-like polymers capable of copying short sections of genetic code that they suggest could act as genomes in synthetic cells.

When life began, the cellular machinery for copying DNA had not yet evolved. So, as the theory goes, the first information-carrying molecules must have been self-replicators. Making self-replicators in the lab has proved difficult, although scientists have had some success using RNA molecules that are also enzymes capable of catalysing their own replication. The new study, however, led by Jack Szostak at Massachusetts General Hospital in Boston, US, focuses on another type of system – one that works without enzymes.

Szostak’s team used phosphoramidate DNA, in which oxygen atoms in the phosphodiester bonds of DNA’s sugar-phosphate backbone are replaced by nitrogen. In previous work, they made phosphoramidate DNA copies from DNA or RNA templates, but they now show they can take a phosphoramidate DNA template and make a phosphoramidate DNA copy, mimicking ‘true’ self-replication and paving the way for self-reproducing synthetic cells. ‘This phosphoramidate system is actually rather nice, because it’s compatible with the kind of vesicles we use,’ says Szostak. ‘So if we could just improve the replication process a little bit more, we might be able to use it as the genome of protocell.’

Although the system only replicates a sequence of four bases, it makes use of a chemical modification to address what Philipp Holliger of the MRC Laboratory of Molecular Biology, UK, calls a ‘big stumbling block’ for self-replicating systems: copying accuracy. Copying depends on matching adenine–thymine (A-T) and guanine-cytosine (G-C) base pairs, so mismatches such as G–T lead to errors in the transmission of the genetic code. But Szostak’s tweak – replacing T with thio-T – increases A-T stability and, crucially, the copying accuracy.

It’s not clear why thio-T makes A-T more stable, but the fact that it does raises further questions about the evolution of the genetic code. ‘You have to give an answer as to why these [modifications] were dropped,’ says Vitor Pinheiro, a synthetic biologist at the Institute of Structural and Molecular Biology, UK. Ignoring that difficult question for now, the tighter pairing also helps to increase the rate of copying – another stumbling block along the way to Szostak’s synthetic cells.

There are, though, plenty more problems left to solve. Szostak himself listed a whole host of problems for his enzyme-free self-replicators in a recent review. ‘They’re taking them down one by one,’ says Holliger. ‘Hopefully at the end of it, you’ll be able to put all this together into a system that could truly perform self-replication. And that would obviously be a spectacular thing.’


Related Content

RNA

25 February 2015 Podcast | Compounds

news image

RNA may be less famous than it's more stable cousin, but is central to cellular function

What does DNA do?

24 April 2013 Premium contentFeature

news image

The more we learn about DNA, the less we seem to know, as Philip Ball discovers

Most Read

US government science institute's one time police chief linked to campus meth lab

31 July 2015 News and Analysis

news image

Explosion injuring a member of the National Institute of Standards and Technology's security force uncovered methamphetamine ...

Antifreeze polymer protects cells as they thaw

29 July 2015 Research

news image

Simple synthetic polymer found to enhance cryopreservation of red blood cells by inhibiting ice crystal growth

Most Commented

(–)-Jiadifenolide

27 July 2015 Organic Matter

news image

BRSM wonders what makes a route so good it becomes the last total synthesis of a complex target

Butterfly population collapse prompts lawsuit against EPA

5 March 2015 News and Analysis

news image

US agency criticised for failing to investigate link between glyphosate and the dwindling monarch butterfly population