Parent oxazine made for the first time


After years of trying, scientists have finally isolated 1,4-oxazine.1 Among the many possible 6-membered fully unsaturated parent heterocycles containing one group 15 and one group 16 atom, 1,4-oxazine is the first to be generated and spectroscopically characterised. The closest molecule to be made in the past was a monosubstituted oxazine.2 Now, Alan Aitken and colleagues at the University of St Andrews in the UK have used flash vacuum pyrolysis to remove the N-tert-butoxycarbonyl group from the previous attempt and taken the synthesis all the way to 1,4-oxazine. Unsurprisingly, being a non-aromatic system, 1,4-oxazine is very unstable.

Libraries of small molecules are central to screening processes in biomedical research and this work could aid wider efforts attempting to expand those libraries by developing synthetic routes to nitrogen-containing heterocyclic scaffolds.


Related Content

Classic Kit: Sprengel pump

28 January 2008 Classic Kit

news image

It has long been said that nature abhors a vacuum

Small lights, big impression

30 May 2013 Premium contentFeature

news image

Andy Extance goggles at the display revolution, the culmination of 30 years of research into organic light emitting diodes

Most Read

First ionic liquid made from plant waste

27 August 2014 Research

news image

Closed loop recycling could see ionic liquids made from biofuel by-products used to make more biofuel

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...

Most Commented

Peak oil is not a myth

20 February 2014 Comments

news image

Fracking won’t plug the gap in crude oil’s falling figures, says Chris Rhodes. Oil’s exhaustion is inevitable

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...