Parent oxazine made for the first time


After years of trying, scientists have finally isolated 1,4-oxazine.1 Among the many possible 6-membered fully unsaturated parent heterocycles containing one group 15 and one group 16 atom, 1,4-oxazine is the first to be generated and spectroscopically characterised. The closest molecule to be made in the past was a monosubstituted oxazine.2 Now, Alan Aitken and colleagues at the University of St Andrews in the UK have used flash vacuum pyrolysis to remove the N-tert-butoxycarbonyl group from the previous attempt and taken the synthesis all the way to 1,4-oxazine. Unsurprisingly, being a non-aromatic system, 1,4-oxazine is very unstable.

Libraries of small molecules are central to screening processes in biomedical research and this work could aid wider efforts attempting to expand those libraries by developing synthetic routes to nitrogen-containing heterocyclic scaffolds.


Related Content

Pyrolysis touted as billion dollar US industry

13 October 2014 News and Analysis

news image

Rapid deployment of plastics-to-oil could add $9 billion to America’s economy and 40,000 jobs

Enthralled by evaporation

20 February 2015 Organic Matter

news image

A giant rotary evaporator is a mesmerising thing, says Chemjobber, but the plant requires a different approach

Most Read

US government science institute's one time police chief linked to campus meth lab

31 July 2015 News and Analysis

news image

Explosion injuring a member of the National Institute of Standards and Technology's security force uncovered methamphetamine ...

(–)-Jiadifenolide

27 July 2015 Organic Matter

news image

BRSM wonders what makes a route so good it becomes the last total synthesis of a complex target

Most Commented

Scientist imprisoned over fraudulent HIV vaccine research

6 July 2015 News and Analysis

news image

Former Iowa State University researcher gets four-and-a-half years in prison for faking vaccine research funded by the NIH

Single polymer pill could deliver entire drug course in one go

27 July 2015 Research

news image

Flexible elastomer ring springs open to stay in stomach and could slowly release drugs over days