Parent oxazine made for the first time


After years of trying, scientists have finally isolated 1,4-oxazine.1 Among the many possible 6-membered fully unsaturated parent heterocycles containing one group 15 and one group 16 atom, 1,4-oxazine is the first to be generated and spectroscopically characterised. The closest molecule to be made in the past was a monosubstituted oxazine.2 Now, Alan Aitken and colleagues at the University of St Andrews in the UK have used flash vacuum pyrolysis to remove the N-tert-butoxycarbonyl group from the previous attempt and taken the synthesis all the way to 1,4-oxazine. Unsurprisingly, being a non-aromatic system, 1,4-oxazine is very unstable.

Libraries of small molecules are central to screening processes in biomedical research and this work could aid wider efforts attempting to expand those libraries by developing synthetic routes to nitrogen-containing heterocyclic scaffolds.


Related Content

Pyrolysis touted as billion dollar US industry

13 October 2014 News and Analysis

news image

Rapid deployment of plastics-to-oil could add $9 billion to America’s economy and 40,000 jobs

Enthralled by evaporation

20 February 2015 Organic Matter

news image

A giant rotary evaporator is a mesmerising thing, says Chemjobber, but the plant requires a different approach

Most Commented

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint

Shadow of Chernobyl

26 April 2016 Critical Point

news image

Mark Peplow takes the long view on the cost of nuclear power