Parent oxazine made for the first time


After years of trying, scientists have finally isolated 1,4-oxazine.1 Among the many possible 6-membered fully unsaturated parent heterocycles containing one group 15 and one group 16 atom, 1,4-oxazine is the first to be generated and spectroscopically characterised. The closest molecule to be made in the past was a monosubstituted oxazine.2 Now, Alan Aitken and colleagues at the University of St Andrews in the UK have used flash vacuum pyrolysis to remove the N-tert-butoxycarbonyl group from the previous attempt and taken the synthesis all the way to 1,4-oxazine. Unsurprisingly, being a non-aromatic system, 1,4-oxazine is very unstable.

Libraries of small molecules are central to screening processes in biomedical research and this work could aid wider efforts attempting to expand those libraries by developing synthetic routes to nitrogen-containing heterocyclic scaffolds.


Related Content

Classic Kit: Sprengel pump

28 January 2008 Classic Kit

news image

It has long been said that nature abhors a vacuum

Small lights, big impression

30 May 2013 Premium contentFeature

news image

Andy Extance goggles at the display revolution, the culmination of 30 years of research into organic light emitting diodes

Most Read

Perovskite solar cells show hydrogen production promise

26 September 2014 Research

news image

Highly efficient solar cells and catalysts made from cheap, common materials use sunlight to split water

Big name coffee chains drawn into acrylamide fight

23 September 2014 News and Analysis

news image

Starbucks and other coffee chains are being sued in California by a non-profit that wants carcinogen labels slapped on their ...

Most Commented

Perovskite solar cells show hydrogen production promise

26 September 2014 Research

news image

Highly efficient solar cells and catalysts made from cheap, common materials use sunlight to split water

First interstellar sighting of a branched alkyl molecule

25 September 2014 Research

news image

Discovery shows that stellar nurseries could hold amino acids too that might have been the spark for life on Earth