Encryption at the flick of a light switch


Scientists have designed a grid of light responsive colloidal particles to function as pixels that could be used to create barcodes for cryptographic data storage.

Photochromic dyes are used in films to respond to light, for example in self-dimming sunglasses. These dyes have two isomers, one forms in visible light and is transparent, the other forms in UV light and absorbs light, darkening the sunglasses. If a photochromic dye is placed in a film with a fluorescent dye, and the wavelength of the fluorescence is matched to that absorbed by the photochromic dye, the photochromic dye can be used to switch the fluorescence off and on when exposed to UV or visible light.

Clemens Weiß and his colleagues at the Max-Planck Institute for Polymer Research in Germany, have devised a way to use this kind of light triggered dye switch to store data. Encapsulating the photochromic/fluorescent dye pair inside polymer colloids traps the molecules together prolonging the lifetime of the ‘on’ or ‘off’ state for several days. Assembling these functional colloids within a monolayer of larger colloids creates a grid of fluorescent ‘colloidal pixels’. Shining UV light on chosen areas of the grid turns the pixels’ fluorescence off creating dark areas on the grid whilst leaving others fluorescent.

The fluorescence can be reversibly switched on and off

They propose that a focussed laser could be used to switch individual colloidal pixels off to create an intricate pattern that could be read like a bar code. The pattern would be erased as soon as it was read with visible light, providing a cheap and simple way to encrypt information.

Jianguo Huang, an expert in functional self-assembly from Zhejiang University in China, says this research is more than ‘just fun for the researchers’ – it has real potential for practical data storage – but optimisation of the grids’ mechanical stability will be important. Weiß comments that a nice feature of this grid system is that the substrate can be changed, for example the grid could be embedded in silica to give it better durability.


Related Content

X marks the structure

31 October 2014 Review

news image

Elisabeth Jeffries discovers there’s a diffractometer for everything from crystals to proteins

Learning from the masters

2 March 2015 Feature

news image

By unpicking how cephalopods change their looks to match their environment, researchers are aiming to reverse-engineer a host...

Most Read

Hydrogel with a basic instinct for drug delivery

15 April 2015 Research

news image

Gel that releases naproxen in alkaline surroundings is promising step toward relieving drug’s side effects

Early Earth collision could clear up two geological mysteries

16 April 2015 Research

news image

Smash-up with Mercury-like body could have ignited nuclear dynamo at Earth's centre and explain isotope discrepancy

Most Commented

Women twice as likely to be hired for academic posts as men

17 April 2015 News and Analysis

news image

Experiment shows that faculty staff are more likely to pick women for job roles based on hypothetical CVs

Oh, the humanities!

20 April 2015 The Crucible

news image

Science and the arts are equally essential to society, says Philip Ball. Don’t divide them by their differences