Water nanostructures disinfect air


The EWNS can disinfect air but start off as nothing more than atmospheric water vapour

Engineered water nanostructures (EWNS), the latest weapons for tackling airborne pathogens, start off as nothing more than atmospheric water vapour.

Despite advances in antibiotics, vaccines and infection control, infectious diseases continue to affect hundreds of millions of people each year and the number of antibiotic resistant bacteria is on the rise. Therefore, there is an urgent need for innovative, effective and low-cost technologies in the battle against airborne infections. Upper-room UV irradiation, air filtration, photocatalysis and biocidal gases are the current methods most commonly used for air disinfection. However, these methods come with a variety of drawbacks such as potential health risks and high costs.

Philip Demokritou and colleagues from the Harvard School of Public Health and the National Institute of Occupational Safety and Health in the US, have designed a system that transforms atmospheric water vapour into EWNS. With a size of only 25nm, the nanostructures are highly mobile and remain in room air for a long time due to their high electric charge. Disinfection of the air is achieved as the nanostructures contain reactive oxygen species, such as hydroxyl and superoxide radicals, which interact with the outer membranes of bacteria, rendering them inactive.

Toxicological studies on mice by Demokritou’s team have shown that the EWNS have minimal toxicological effects. No respiratory tract toxicity was found at exposure levels and times higher and longer than those needed to inactivate the bacteria. Demokritou explains that the radicals are harmless to cell membranes in the lungs of test animals because ‘the organic matter in the lung lining fluid which covers the epithelial cells neutralises the reactive oxygen species, so they never reach the cells.’

‘The proposed method has the potential to transform the way we currently control infectious diseases,’ says Demokritou, ‘if proven effective in practice, it could be used to create “shields” to protect people in their microenvironments.’

Vishal Shah, an expert in microbiology from Dowling College in New York, US, agrees that the research presents ‘a proof-of-concept for an interesting technology that could help improve air quality, particularly in high moisture indoor environments.’ Shah adds that in the future, he would ‘look forward to seeing results describing the efficiency of the technology to inactivate other viruses and gram positive bacteria like streptococci and staphylococcus.’

The team now intend to extend their research to ascertain if EWNS can disinfect fresh produce.


Related Content

Yongmei Zheng: Spider silk and butterfly wings

7 August 2014 Research

news image

Yongmei Zheng talks to Jennifer Newton about materials than can manipulate water droplets

Clever comestibles

28 July 2011 Feature

news image

Controlling the microscopic structure of foods could make diet products that help you feel fuller for longer. Emma Davies get...

Most Read

Mystery of coloured water droplets that chase and repel each other solved

19 March 2015 Research

news image

Discovery could herald sprays that hoover up dirt and keep solar panels clean

Simple cooking changes make healthier rice

23 March 2015 Research

news image

Adding oil to water, cooling and reheating rice makes fibre-like resistant starch, reducing calories

Most Commented

Worrying molecule found in bottled water

9 September 2013 Research

news image

Analysis finds a new endocrine disrupting chemical in bottled water

Impatient chemistry

28 February 2014 Last Retort

news image

Is the pressure to publish making chemists cut corners?