Self-healing battery cracks anode fracturing problem


Lithium-ion batteries are the gold standard rechargeable batteries in consumer electronics such as mobile phones because they’re light and hold plenty of energy. For more demanding applications, such as electric vehicles, however, researchers want batteries that hold more energy, letting cars go further on a single charge. To do this, electrical engineers need a better anode, but many experimental designs expand and then crack when charged repeatedly. Now, US researchers have created battery anodes that heal themselves after they fracture, substantially prolonging battery life.  

anode

Before and after: five hours later the cracks in the anode are starting to heal over © NPG

The current material of choice for anodes is graphite. When the battery is charged, lithium cations intercalate themselves between the planes of carbon, forming LiC6. These are released during discharge. For the battery to hold more charge, the anode needs to hold more lithium. Silicon is a promising material as it forms either Li15Si4 or Li21Si5. Inevitably, though, all those extra atoms forcing themselves into the anode makes the silicon expand by up to 300%, which can cause it to shatter in just a few charge/discharge cycles.

Yi Cui's and Zhenan Bao's groups at Stanford University have joined forces to produce an elegant solution to anode fractures. Cui's group has previously worked on lithium-ion batteries, while Bao's has designed conductive, self-healing polymers for synthetic skin and other applications. To tackle this battery problem they embedded silicon microparticles inside a randomly branched, hydrogen bonding, amorphous polymer.

When the silicon microparticle anode start to expand during use, the polymer chains stretch out and rearrange themselves, accommodating expansion without shattering. If a tear does occur, the hydrogen bonding at the crack interfaces lets it heal. Embedded carbon black particles gave the polymer electrical conductivity.

The team tested anodes made from the material by repeatedly charging and discharging electrochemical cells that used them. After 90 cycles, the electrodes retained 80% of their original discharge capacity. An anode that embedded the silicon microparticles in a seaweed gel retained only 47% of its capacity after 20 cycles. Anodes using other polymer binders performed even worse.

The team is now optimising its lithium–polymer composite to improve the cycling stability and other properties. ‘Several hundred cycles are needed for cell phone batteries and several thousand for electric vehicles,’ says Bao. ‘We are trying to understand the detailed chemical and physical processes to have a better idea of what parameters of our self-healing polymers we need to change.’

Materials scientist Nancy Sottos of the University of Illinois, Urbana-Champaign, US, whose research group uses a different type of self-healing polymer for battery anodes, says: ‘It is a very good approach for the system that they're looking at. What isn't clear is whether this will work if you have a high filler content [the silicon in this case] and maybe less polymer, which is more typical of commercial electrodes.’


Related Content

Capsules for safer and more reliable lithium ion batteries

23 February 2011 News Archive

news image

Self-healing coatings inspire improvements to the electrodes

Polymer sets new self-healing record

8 May 2014 Research

news image

Material mimics animal healing forming a scaffold to support repair of holes over 3cm wide

Most Read

No-frills coats set a trend for designer viruses

26 August 2014 Research

news image

An artificial protein that self-assembles around and protects DNA could be ideal for gene therapy, nanomachines and synthetic...

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...

Most Commented

Rigid molecular wires make electrons fly

29 August 2014 Research

news image

Organic wires conduct electrons 800 times faster than other molecular counterparts by letting them hitch a ride on a vibratio...

Concerns over chemical treatment of reclaimed fracking fluid

29 August 2014 Research

news image

Current recycling procedure may do more harm than good