Hydrogen breaks strong bonds with brute force


The hydrogen differentiates its colliding partners by their atomic mass

Projectile hydrogen molecules are central to a new green method for precisely breaking one of the most abundant and industrially important bonds you can find.

C–H bonds are very stable and as such their cleavage normally requires either a temperature above 300°C or treatment with something like irradiation – both of which can cause organic molecules to lose their functionality. Now a method developed by Leo Lau of Western University in Canada and colleagues can break C–H bonds without damaging the rest of the molecule.

Lau explains that although H2 is unreactive at room temperature, by raising its kinetic energy to more than 10eV it is possible to drive C–H cleavage when the H2 hits the H atom of a C–H bond. The H2 works as a light-mass projectile and differentiates its colliding partners by their atomic mass and ‘like the scalpel of a skilful surgeon’ only excises a hydrogen atom. The dissociation occurs nearly 100% of the time and all of the other bonds remain intact.

Carbon radicals generated by the C–H cleavage then form C–C cross-links at room temperature with no additional energy or chemical requirements. The reactor is relatively simple and, apart from a small amount of H2, no other reactive gases are consumed making this a cost-effective and accurate method for introducing new C–C cross-links between organic molecules.

With regards to future work Lau says ‘the key issue here is not improving the method, but letting more chemists know about this intriguing and simple method. The scope of applicability here is huge as the method can be applied to the cross-linking of all organic molecules with a C–H bond.’

Claire Vallance, an expert in reaction kinetics at the University of Oxford in the UK, says ‘the approach is beautiful in its simplicity, and the fact that it ticks all of the “green chemistry” boxes is an added bonus.’


Related Content

What is a bond?

30 January 2014 Premium contentFeature

news image

There’s more to bonding than covalent, ionic and the lines we draw between atoms on paper. Philip Ball takes on the expandi...

Chemistry World podcast - November 2013

4 November 2013 Podcast | Monthly

news image

Michelle Francl helps us tackle chemophobia, and we discover the history, art and science of alloys with David Dye

Most Read

Coated nanoparticles show Alzheimer's promise

12 September 2014 News and Analysis

news image

Gold nanoparticles functionalised with amino acid polymer inhibit the growth of amyloid fibres associated with neurodegenerat...

First flexible graphene display paves the way for folding electronics

11 September 2014 News and Analysis

news image

Team behind the bendy e-reader display hope to have a full colour graphene-based smartphone style screen within a year

Most Commented

US genomics lead being lost to China

17 September 2014 News and Analysis

news image

NIH senior leaders are sounding the alarm bells, saying the US's pre-eminence in genomics research is under threat

The trouble with boycotts

29 August 2014 Critical Point

news image

Cutting academic ties with a censured state can do more harm than good, says Mark Peplow