Device runs on finger power


Movement creates piezoelectric potentials for manipulating droplets in the microfluidic system

Researchers in the US have demonstrated that mechanical energy from a human hand can power a microfluidic device.

The behaviour of liquids on a charged dielectric surface can be controlled by passing a current through that surface, known as the electrowetting on dielectric phenomenon (EWOD). In digital microfluidic devices, individual droplets containing samples or reagents are manipulated, allowing the controlled movement and mixing of reagents in different droplets. However, the need for a bulky external high-voltage power supply currently limits the potential application in biomedical devices and optics.

Now, Chen Peng and colleagues at the University of California in Los Angeles have converted mechanical energy pulses, made by bending a series of piezoelectric elements with their fingers, into voltage pulses that can power an EWOD device.

Peng explains how the mechanical energy can be converted into a voltage: ‘Bending the piezoelectric element creates a mechanical stress in the piezoelectric film on it. Due to the stress, the electric charge will accumulate at the material surface, thus generating a net voltage difference across the material in an open circuit’.

Using this effect in an EWOD device was not without its challenges, adds Peng. ‘Piezoelectricity creates voltage but little current. An EWOD device operates with voltage, but nevertheless the current should be enough to charge the capacitors on the device. We had to carefully consider conflicting aspects of the EWOD devices, including the capacitance, actuation voltage and robustness, to assure reliable actuation of droplets using mechanical-to-electrical energy conversion.’

Aaron Wheeler, a digital microfluidics expert at the University of Toronto in Canada, can see the potential for powering EWOD devices in this way: ‘the idea of using piezoelectric potentials for droplet manipulation is exciting – one can imagine many different applications of ‘passive’ devices not requiring external power supplies for operation’.


Related Content

Chemistry World podcast - February 2014

5 February 2014 Podcast | Monthly

news image

This month, alternatives to animal testing and exploring actinide chemistry

Faster, cheaper, better

24 September 2014 Premium contentFeature

news image

Microfluidics researchers are aiming to bring new diagnostic devices into mainstream medicine. Mark Peplow reports

Most Read

Women twice as likely to be hired for academic posts as men

17 April 2015 News and Analysis

news image

Experiment shows that faculty staff are more likely to pick women for job roles based on hypothetical CVs

Carbon nanotube-based sensor detects meat spoilage

23 April 2015 Research

news image

Electron density of cobalt porphyrin complexes key to meat freshness sensor

Most Commented

Oh, the humanities!

20 April 2015 The Crucible

news image

Science and the arts are equally essential to society, says Philip Ball. Don’t divide them by their differences

Relativity behind mercury's liquidity

21 June 2013 Research

news image

First evidence that relativistic effects are indeed responsible for mercury's low melting point