Crystal ribbons grow on a curve


We all know that the conditions under which crystals are grown can affect their size and shape. But Guangnan Meng and colleagues at Harvard University in the US wanted to investigate the effects of elastic stress on them, which is increased by growing crystals on a curved surface rather than a flat one.

They tried to grow two-dimensional colloidal crystals on the surface of spherical water droplets and used confocal microscopy to watch what happened. Normally, when grown on a flat surface, the tiny crystallite particles merge together to form flat crystal sheets that grow bigger and bigger. But on a curved surface they can’t fit together, and this tension forces them into narrow, ribbon-like crystalline structures that make a branched pattern on the surface of the drop.  The team say their observations could be useful in some areas of nanotechnology, for example assembling viral capsids or phase separation on vesicles.


Related Content

Polymer puts a new twist on soft robotics

10 February 2014 Research

news image

Clever photochemical switching system lets coiled molecular architecture power a piston

Graphene ribbons exceed theoretical conduction limit

6 February 2014 Research

news image

Smooth-edged nanoribbons could supersede copper in nanoelectronics

Most Read

Agatha Christie, the queen of crime chemistry

28 August 2015 Feature

news image

Kathryn Harkup looks at how Agatha Christie used her chemical training in her detective novels

Simple chemistry saving thousands of gold miners from mercury poisoning

25 August 2015 News and Analysis

news image

Basic apparatus is cutting mercury pollution and helping Indonesian miners go for gold

Most Commented

A risky business

28 August 2015 In the Pipeline

news image

Graduate research is likely the most risky time of a chemist’s career, says Derek Lowe

Exploiting the data mine

13 August 2015 Feature

news image

Chemists must embrace open data to allow us to collectively get the best out of the masses of new knowledge we unearth, repor...