Crystal ribbons grow on a curve


We all know that the conditions under which crystals are grown can affect their size and shape. But Guangnan Meng and colleagues at Harvard University in the US wanted to investigate the effects of elastic stress on them, which is increased by growing crystals on a curved surface rather than a flat one.

They tried to grow two-dimensional colloidal crystals on the surface of spherical water droplets and used confocal microscopy to watch what happened. Normally, when grown on a flat surface, the tiny crystallite particles merge together to form flat crystal sheets that grow bigger and bigger. But on a curved surface they can’t fit together, and this tension forces them into narrow, ribbon-like crystalline structures that make a branched pattern on the surface of the drop.  The team say their observations could be useful in some areas of nanotechnology, for example assembling viral capsids or phase separation on vesicles.


Related Content

Polymer puts a new twist on soft robotics

10 February 2014 Research

news image

Clever photochemical switching system lets coiled molecular architecture power a piston

Graphene ribbons exceed theoretical conduction limit

6 February 2014 Research

news image

Smooth-edged nanoribbons could supersede copper in nanoelectronics

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

Smart skin for prosthetic limbs senses heat and touch

12 December 2014 Research

news image

Ultra-thin plastic skin can bend and flex without affecting the skin's ability to detect stimuli

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint