Early days of x-ray crystallography


André Authier
Oxford University Press
2013 | 441pp | £45
ISBN 9780199659845
Reviewed by Alan Dronsfield
http://rsc.li/CW_021406
 
Time travel with me back to March 1912. Wilhelm Röntgen has discovered x-rays some seven years earlier, but their nature is still unknown. Some interpret their properties in terms of a ‘corpuscular’ theory, while others see them more as electromagnetic waveforms. The internal composition of crystals, too, is perplexing: is sodium chloride some solid combination of ‘molecules’ of NaCl or are the particles (atoms or ions) arranged in a lattice somehow? 
 
A month hence, Max von Laue will project a narrow beam of x-rays on to the face of a crystal of copper sulfate and observe a ‘considerable number of deflected rays’. This discovery, the first x-ray diffraction pattern, will change chemistry; for the first time scientists will have insights on the internal atomic make-up of crystals.
 
William Lawrence Bragg will realise that the diffraction pattern means x-rays must be a form of electromagnetic radiation, and a year later, the Braggs will publish their famous law, = 2dsinθ. In 1915, they will be awarded the Nobel prize in physics.
 
This book can be enjoyed on two levels. Readers who are mathematically inclined x-ray crystallographers will appreciate the rigour of the author’s approach, but others (like this reviewer) will still get a sense of the excitement of the period: how structure after structure yielded its secrets, how Henry Moseley established the concept of atomic number, and much more.
 
A considerable portion of the book (130 pages) is devoted to a history (starting with Aristotle) of the nature of crystals. The book is also liberally illustrated with informative, but rather brief, biographies of the workers in this branch of science. Perhaps if the author is tempted to take up his pen again, he might consider providing yet more details of the personalities of these scientists and, of course, their contributions.
 
Purchase Early days of x-ray crystallography from Amazon.co.uk
 

Related Content

UNESCO launches International Year of Crystallography

21 January 2014 News and Analysis

news image

The worldwide celebration kicked off with a two-day opening ceremony in Paris

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint