Multiferroic material breaks symmetry with layers

The alternating layers of YFeO3 and LaFeO3 give the structure its unusual polarisation properties

An international team of scientists have made a material capable of both piezoelectric and ferromagnetic behaviour. The discovery opens up the possibility of a new class of polarisable and magnetic compounds, and could lead to better devices for storing electronic information.

New data storage techniques are in demand to meet the ever-increasing use of digital information. Present methods rely on the writing and reading of computer bits by electricity, and require a high electrical current. This generates heat so the amount of data that can be stored on a drive is limited by how efficiently the device can be cooled.

One possible solution is to read the bits electronically but write them magnetically, thereby removing the need for high electrical currents and cooling mechanisms. This method requires a material in which the electrical polarisation can be controlled by changing the magnetic field, but so far no such materials have been discovered.

A crucial first step is to find materials that can display both electrical polarisation and magnetisation at the same time, known as multiferroic materials. Multiferroic materials are challenging to make as there is often competition between their electronic structure requirements, which give rise to each property, and they also have strict symmetry conditions for the overall crystal structure of the material, which must be fulfilled.

Electrical polarisation is impossible in materials with a centre of inversion, so breaking the inversion symmetry of the material is crucial for electrical polarisation to occur. As this is a very common property of many materials’ crystal structures, this limits the number of potential compounds capable of showing multiferroic behaviour, and remains a barrier to the possibility of magnetic data writing.

However, the new approach described by Matthew Rosseinsky, from the University of Liverpool in the UK, and colleagues, side-steps this problem by showing how two centrosymmetric perovskite materials can be combined in such a way as to break the inversion symmetry of the whole material. Depositing alternating layers of yttrium iron oxide (YFeO3) and lanthanum iron oxide (LaFeO3) using a laser produces a larger heterostructure in which the alternating layers of Y3+ and La3+ cations combine with the tilting of the FeO6 octahedra to remove the centre of inversion symmetry.

The resulting material has the desired piezoelectric and ferromagnetic properties, and raises the possibility of forming a new class of polarisable and magnetic compounds in this way. ‘Layered deposition is important in order to control the distribution of the yttrium and lanthanum cations,’ says Rosseinsky. ‘A conventional solid-state chemical reaction would produce a random distribution, which would not display the required properties’.

Paolo Radaelli, who researches the electronic properties of transition metal oxides at the University of Oxford, UK, agrees: ‘This is a very important result. Engineering materials by stacking two or more phases in a pattern that breaks the centre of inversion is an extremely promising route towards room temperature, robust multiferroic behaviour’.

The team is now looking to expand the technique to other perovskite materials.


This paper is free to access until 25th March 2014. Download it here:

J Alaria et al, Chem. Sci., 2014, DOI: 10.1039/c3sc53248h

Related Content

The power of perovskites

22 August 2014 Premium contentFeature

news image

Andy Extance finds out how the efficiency of perovskite solar cells has risen so quickly

Perovskite solar cells show hydrogen production promise

26 September 2014 Research

news image

Highly efficient solar cells and catalysts made from cheap, common materials use sunlight to split water

Most Read

Magnetic resonance taken to the limit

21 November 2014 Research

news image

Technique can read the spin of a single nucleus opening up a new way to investigate proteins and complex molecules

Boron and beryllium finally shake hands

24 November 2014 Research

news image

Never-before-seen bond observed between periodic table neighbours

Most Commented

US approves low acrylamide spud

25 November 2014 News and Analysis

news image

The first genetically modified potato that produces less acrylamide has been granted approval in the US

Nanostripe controversy in new twist

24 November 2014 Research

news image

Creator of striped nanoparticles insists questions over structures have already been answered and accuses critics of a 'perso...