New thermoset plastics simple to recycle


Thermosetting polymers that can be easily recycled have been developed by an international team of researchers. The team hopes that the work will prove useful in the electronics industry, where it could allow simpler recovery of high value components from a circuit board, and reduce the volume of waste plastic that ends up in landfill.

Unlike thermoplastics, in which the polymer chains are not chemically bonded to one another, thermosetting polymers are highly cross-linked, so the chains can’t be untangled when the polymer is heated. This crosslinking gives them better physical strength and chemical stability – qualities valued in industries from microelectronics to aeronautics – but it also makes them extremely difficult to recycle, so large quantities are thrown away.

Jeanette García at IBM Almaden Research Center, US, and colleagues designed and synthesised two new classes of thermosetting polymer from difunctional amine monomers that polymerise into a triangular network in a paraformaldehyde condensation reaction. At temperatures around 50ºC, flexible polymers cross-linked by hemiaminal dynamic covalent networks (HDCNs) are produced. At higher temperatures, stronger, more brittle polymers linked by rigid triazine links are formed. One such material, poly(hexahydrotriazine) (PHT) is one of the strongest thermosets known and was made even stronger by incorporating 2–5% carbon nanotubes into it.

thermoset

Model polymerisation process of the new thermoset plastics that proceeds via a hemiaminal intermediate © Science/AAAS

While remaining completely inert in neutral or basic conditions or in mildly acidic environments such as citric acid, both the HDCN polymer links and the triazine links can easily be hydrolysed by strong acids. ‘Theoretically, the number of times you can do this is infinite because you are going back to the monomer,’ explains García. ‘You can then use that monomer to repolymerise into whatever material you want. The chemistry is going to be the same and the properties of the polymer will be identical to what you'd get if you had done it for the first time.’

Hatsuo Ishida of Case Western Reserve University, US, describes the work as ‘a groundbreaking proof of concept’ although he believes the specific materials demonstrated here would probably be unattractive to engineers. For example, he says, the PHT fails at only 1% strain, which would make it problematic as a matrix material in a fibre-reinforced composite. ‘You need to have the resin fail after the fibre fails, otherwise you will not be able to utilise the fibre strength fully,’ he says. ‘From that point of view, this matrix polymer is far too brittle.’

thermoset

At lower temperatures a more flexible polymer is formed but at higher temperatures a stronger thermoset is created © Science/AAAS


Related Content

Green packaging blues

9 May 2014 Premium contentFeature

news image

Plastic packaging is ubiquitous, but uses precious resources and goes straight to waste. Bea Perks takes a look

Europe wants to get tough on plastic waste

28 January 2014 News and Analysis

news image

Parliament sets its sights on lightweight carrier bags and 'dangerous plastics'

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint