Defining graphene


A grid-based system to sort and classify graphene and similar materials has been developed by a team of European researchers. Thanks to graphene’s extreme chemical and mechanical stability, high electronic conductivity and biocompatibility, new graphene-based materials (GBMs) are cropping up in fields as diverse as photonics, energy generation and biomedicine. But such rapid growth of the graphene ‘family’ raises an important question: how should new GBMs be identified?

One answer, developed under the European Union’s Graphene Flagship, is a classification system based on integrating GBMs’ physical and chemical properties into a single framework. Categorising graphene types like this makes it easier to explore their potential applications.

‘Every time there is a new field of research there is a rush for naming materials, processes and phenomena,’ explains Peter Wick, a member of the Health and Environment team – one of several groups operating under the Graphene Flagship – that put the framework together. ‘This causes confusion, with multiple teams working on the same thing and calling it differently.’ As one of the EU’s biggest ever research initiatives, the Flagship is a pan-European research collaboration aiming to drive cutting edge graphene research into commercial technology within the next decade. ‘Since the Graphene Flagship is a combined research effort it is essential to have a common vocabulary,’ Wick adds.

The new system classifies GBMs according to where they lay on a 3D grid defined by three parameters; the number of graphene layers, the average lateral size, and the carbon-to-oxygen atomic ratio. For example, graphene nanosheets occupying one corner of the grid evolve into graphite microplates as the number of layers reaches ten and their size increases to 250nm. This, the team believes, is an initial step towards categorising distinct graphene types using three easy-to-measure and quantifiable characteristics.

The grid sorts graphene materials based on the number of layers, lateral size and C/O ratio © Wiley VCH

Wick, who is based at the Swiss Federal Laboratories for Materials Science and Technology, also hopes that the framework spells a means of relating the physical chemical properties of different types of GBMs with their biological effects. ‘By that we can support the safe and sustainable use of graphene-based applications, in particular in biomedical applications,’ he says.

Developing a universal classification system for graphene is of crucial importance, says Weibo Cai, who researches the biomedical applications of graphene- and silica-based nanomaterials at the University of Wisconsin, US. He says the framework Wick and colleagues have developed is based on useful properties and could have a ‘profound and multi-faceted impact in biomedicine’.

References

P Wick et al, Angew. Chem., Int. Ed., 2014, DOI: 10.1002/anie.201403335


Related Content

Chemistry World podcast - September 2013

2 September 2013 Podcast | Monthly

news image

Emma Smith surveys the prospects for chemistry graduates and Polly Arnold looks at plugging the leaky pipeline of women in ch...

Nanotech patent jungle set to become denser in 2013

17 January 2013 News and Analysis

news image

Is a thicket of patents strangling a nascent industry?

Most Read

Better batteries with pure lithium anodes

28 July 2014 Research

news image

Protective carbon nanosphere coating overcomes lithium problems, pointing the way to improved capacity

Takeover battle pushes Allergan to cut R&D jobs

28 July 2014 Business

news image

Besieged by serially acquisitive Valeant, the Botox maker will lay off 1500 staff to propel earnings growth

Most Commented

Bubble wrap could send lab costs packing

23 July 2014 Research

news image

Potential bubbles up across wide range of uses as storage and test vessels, especially for poor countries

Relativity behind mercury's liquidity

21 June 2013 Research

news image

First evidence that relativistic effects are indeed responsible for mercury's low melting point