Separation by levitation


A team in the US has shown that enantiopure and racemic crystals can be separated by magnetic levitation.

The isolation of pure enantiomers is of particular importance in the pharmaceutical industry, where one enantiomer is typically responsible for the therapeutic effects of a drug, while the other may be inactive or even toxic. One alternative to the often used solution-based separation techniques such as high-performance liquid chromatography (HPLC) is to purify the desired enantiomer from a mixture of crystals of enantiomerically pure and racemic compound.

Separation of a mixture of S-ibuprofen (red arrow) and RS-ibuprofen (yellow arrow) using MagLev

As enantiopure and racemic crystals generally have different densities due to distinct packing arrangements of the molecules, they can be levitated in a paramagnetic solution to different heights by the balance of magnetic and gravitational forces and then separated.

Using four sequential magnetic levitation (MagLev) separations, a team led by Allan Myerson at the Massachusetts Institute of Technology purified a 1:1 mixture of S- and RS-ibuprofen to 99.2% ee.

‘Chiral resolution, especially during drug discovery, requires tedious method development by an experienced scientist to achieve efficient separation,’ says Syed Rizvi, a chiral separations and pharmaceutical analysis expert at Nova Southeastern University in the US. ‘The MagLev technique however is quite simple, inexpensive and has great potential to become a routine method for chiral separation.’

Despite its simplicity, the use of MagLev on a large scale presents a number of challenges. ‘As it requires that the racemic crystal forms reliably, does not stick to enantiomerically pure crystals, and has a different density, it is more likely to be used in an analytical laboratory setting engaged in preclinical studies of a compound,’ says Myerson. The need for an equilibration time for the drug crystals to settle as well as the choice of paramagnetic medium also need to be considered.

The team are currently working to apply MagLev to the purification of other chiral compounds, and hope to extend their technique to the separation of cocrystals.

References

This paper is free to access until 30 July 2014. Download it here:

X Yang et al, Chem. Commun., 2014, DOI: 10.1039/c4cc02604g


Related Content

Nanoparticle composites make colourful magnetic crystals

20 March 2014 Research

news image

Gel crystallisation loads gold and iron into normally colourless calcite to give it new properties

Beyond graphene

3 January 2014 Feature

news image

Other materials can be made into ultra-thin nanosheets. Jon Evans finds out whether they can generate the same buzz

Most Read

Coated nanoparticles show Alzheimer's promise

12 September 2014 News and Analysis

news image

Gold nanoparticles functionalised with amino acid polymer inhibit the growth of amyloid fibres associated with neurodegenerat...

First flexible graphene display paves the way for folding electronics

11 September 2014 News and Analysis

news image

Team behind the bendy e-reader display hope to have a full colour graphene-based smartphone style screen within a year

Most Commented

Does life play dice?

3 September 2014 The Crucible

news image

Philip Ball wonders whether life evolved to exploit quantum phenomena, or if it’s just in our nature

The trouble with boycotts

29 August 2014 Critical Point

news image

Cutting academic ties with a censured state can do more harm than good, says Mark Peplow