‘Smell of death’ reveals cadaver's secrets


The research could help train sniffer dogs that are used to locate disaster victims © Shutterstock

Not many of us like to consider the complex chemical processes that begin after we die. But new research into the chemical odours released by decomposing bodies is providing forensic scientists with a powerful tool to determine how long a person has been dead, a term known as post-mortem interval (PMI).  Understanding this ‘smell of death’ also helps scientists understand how sniffer dogs discover buried disaster victims and locate clandestine graves.

An international research team used two-dimensional gas chromatography time-of-flight mass spectrometry to characterise the odours that create this smell of death:  volatile organic compounds (VOCs).  By measuring the VOCs released from pig carcasses the team identified a cocktail of several different families of molecules, including carboxylic acids, aromatics, sulfurs, alcohols, nitro compounds, as well as aldehydes and ketones. The combination and quantities of these VOCs change as a function of time as a cadaver goes through different stages of decomposition.

Author Jean-François Focant from the University of Liege, Belgium, tells Chemistry World:  ‘The use of state-of-the-art multi-dimensional techniques has allowed us to drastically improve our understanding of the VOC mixtures released during cadaveric decomposition. An odour fingerprint can be created for each stage of decomposition and possibly be used as an additional tool to estimate the PMI.’

Current PMI estimation is limited to assessing things like body cooling, how advanced decomposition is and the size of insects that have colonised the body. However, these do not always give an accurate answer. ‘Charting the changes to VOCs won’t provide a 100% reliable way of estimating PMI but it might improve the situation enormously,’ explains Anna Williams, a forensic anthropologist at the University of Huddersfield, UK.

The research could also help with the training of ‘human remains detection canines’. ‘We know very little about what compounds or combinations of compounds are recognised by sniffer dogs,’ says  Williams. ‘Understanding this helps to improve their work in the field and with training aids. However, research on pigs as analogues for humans is compromised from the start. A human taphonomy facility (where the decomposition of human remains are studied) would boost forensic research.’

The development of a VOC profile for decomposing bodies should help scientists working to create an electronic nose, which are hardier than dogs and do not need costly training and upkeep. Sniffer dogs are more adaptable than their e-nose counterparts, however, and by entering dangerous places alone they help to keep their handlers safe. ‘Several groups are working on e-noses at the moment,’ Focant says, ‘but we are not sure if this technology will ever make sniffer dogs obsolete.’


Related Content

Spectrometry to the rescue!

15 January 2013 Research

news image

Ion mobility spectrometry could replace sniffer dogs hunting for survivors in the wake of natural disasters

Putrescine

1 August 2012 Podcast | Compounds

news image

This week's podcast is about putrescine

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

A bad business

19 December 2014 Critical Point

news image

Targets and assessments can boost productivity at universities – but only if they do not stifle creativity and alienate the...

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint