Molecular brass


This is the first time a molecular compound with an unsupported Cu–Zn bond has been reported

Brass has been known to man since prehistoric times; now scientists in Germany have isolated the first molecular example of the copper–zinc alloy.1

The chemistry of solid state alloys is well established, yet understanding why different alloys possess particular properties is a greater challenge. Using a bottom-up approach, scientists aim to build intermetallic materials from the smallest available components, and identify boundaries where molecular properties meet bulk material properties. Constructing molecular clusters which mimic such materials is a step in this direction, providing fundamental insights into the chemical bonding of the target materials.

The challenge in synthesising such materials lies in finding the right precursor components, explains Roland Fischer: ‘from a thermodynamic point of view this should all be possible, but how do we make it? The art is in finding the right entry door down the right pathway.’ Complexes bearing metal–metal bonds between first-row transition metals remain exceptionally rare, owing to weak bonding interactions as a result of poor d orbital overlap between the small metal centres. Exploiting a low valent organometallic zinc compound,2 in combination with a cleverly selected isonitrile-functionalised copper complex, Fischer and co-workers from Ruhr University Bochum, Germany now report the unprecedented isolation of a ligand protected copper–zinc cluster. What’s more, this Cu4Zn4 complex features the first molecular example of an unsupported copper–zinc cluster covalent bond.

The cluster comprises a tetrahedral arrangement of four copper atoms, where each face of the tetrahedron is capped with a zinc atom, giving rise to an outer zinc tetrahedron. In fact, the very inverse of this Cu4Zn4 tetrahedral star is found at the core of a well-known phase of the alloy, γ-brass, where an outer Cu4 tetrahedron surrounds an inner Zn4 tetrahedron. ‘Of most interest is that the core resembles a well-defined cut out of the structure of γ-brass, or more simply put, a piece of brass coated with ligands.’, says Cameron Jones, an organometallic expert from Monash University in Melbourne, Australia.

‘We are so happy to be able to show that there is a structural relationship between our molecule and the structural principles of the intermetallics’, says Fischer. ‘Now our Mount Everest is to find the right components to mimic systems which are known to possess advantageous catalytic properties, and explore a whole area of untouched ground with respect to the reactivities of such compounds.’


Related Content

Another brick in the whorl

23 February 2012 Feature

news image

The scientists on the inside of advanced fingerprinting research are cross-examined by Simon Hadlington

Molecular machines

16 February 2016 Feature

news image

Victoria Richards investigates the world of artificial molecular machines – where have they come from and where are they he...

Most Commented

WHO clarifies glyphosate risks

23 May 2016 Business

news image

UN and WHO panel conclude the herbicide glyphosate is ‘unlikely’ to cause cancer at realistic exposure levels

Crawling chemical system acts as if it’s alive

24 May 2016 Research

news image

Intriguing globule that moves, eats and defecates