Graphene springs into action


Graphene springs are made by wrapping wet graphene fibres around cylindrical objects before annealing them at 500 °C

Researchers in China are hoping to expand the unconventional applications of graphene with their introduction of graphene springs that can function as actuators.

Springs are fundamental components in numerous electronic and mechanical systems. Most commercial springs are made of metal. Carbon-based springs, however, are less advanced, but have the potential to be a lightweight option if their poor elasticity can be tackled.

Now, graphene springs made by Liangti Qu and colleagues, at the Beijing Institute of Technology, succeed where traditional carbon-based springs have failed.

They can be elongated to 480% of their original size and maintain a stable elasticity coefficient even after being stretched 100,000 times to 300% of their original size. ‘Whether you compress them or stretch them, the springs always recovers to their original state without obvious deformation,’ says Qu.

Qu explains that not only are the springs very light with high thermal and electrical conductivity, they are easy to functionalise and tolerant to harsh conditions. In this study, the springs were made to be around 10cm long but Qu says there is no limit on their length. 

The springs were made by wrapping wet graphene fibres around a glass bar before annealing them at 500 °C. Applying a voltage causes the charged loops to repel each other and can elongate the springs to more than twice their original size. If the graphene springs are functionalised with magnetic particles they can be actuated in response to a magnetic field to act as magnetostrictive switches – a property the researchers demonstrated by incorporating a spring into a simple circuit containing an LED and a battery.

Functional materials specialist Liming Dai, of Case Western Reserve University, US, describes the work as interesting and elegant. ‘While these graphene fiber springs serve as ideal building blocks for the development of novel stretchable circuits, magnetostriction switches and large displacement actuators with an unprecedentedly high actuation rate – over 4 times faster than natural muscle – their practical applications will not be realised if there is no large-scale production capability for graphene fibre springs at a relatively low cost. Continued research and development in this exciting field will be of great value.’

 

 

 

References

This article is free to access until 19 September 2014. Download it here:

H Cheng et al, Nanoscale, 2014, DOI: 10.1039/c4nr03409k


Related Content

Graphene robot has some smooth moves

27 October 2011 News Archive

news image

Scientists have added a graphene layer to a polyethylene actuator to convert IR into energy to move the actuator

Graphene beyond the hype

19 June 2015 Feature

news image

For the past 10 years, graphene has popped up in many headlines. Emma Stoye looks at whether current progress matches up to t...

Most Read

Collaboration, not competition

29 June 2015 Research

news image

Organic chemist E J Corey talks to Phillip Broadwith about awards, ambition and academic freedom

Copper catalysis overcomes double bond trouble

3 July 2015 Research

news image

Stubbornly stable unactivated internal alkenes become chiral tertiary amine precursors

Most Commented

Collaboration, not competition

29 June 2015 Research

news image

Organic chemist E J Corey talks to Phillip Broadwith about awards, ambition and academic freedom

Z machine puts the squeeze on metallic deuterium

25 June 2015 Research

news image

Pressures similar to those at centre of the Earth forge metallic deuterium in step toward 80-year-old dream of creating metal...