Graphene springs into action

Graphene springs are made by wrapping wet graphene fibres around cylindrical objects before annealing them at 500 °C

Researchers in China are hoping to expand the unconventional applications of graphene with their introduction of graphene springs that can function as actuators.

Springs are fundamental components in numerous electronic and mechanical systems. Most commercial springs are made of metal. Carbon-based springs, however, are less advanced, but have the potential to be a lightweight option if their poor elasticity can be tackled.

Now, graphene springs made by Liangti Qu and colleagues, at the Beijing Institute of Technology, succeed where traditional carbon-based springs have failed.

They can be elongated to 480% of their original size and maintain a stable elasticity coefficient even after being stretched 100,000 times to 300% of their original size. ‘Whether you compress them or stretch them, the springs always recovers to their original state without obvious deformation,’ says Qu.

Qu explains that not only are the springs very light with high thermal and electrical conductivity, they are easy to functionalise and tolerant to harsh conditions. In this study, the springs were made to be around 10cm long but Qu says there is no limit on their length. 

The springs were made by wrapping wet graphene fibres around a glass bar before annealing them at 500 °C. Applying a voltage causes the charged loops to repel each other and can elongate the springs to more than twice their original size. If the graphene springs are functionalised with magnetic particles they can be actuated in response to a magnetic field to act as magnetostrictive switches – a property the researchers demonstrated by incorporating a spring into a simple circuit containing an LED and a battery.

Functional materials specialist Liming Dai, of Case Western Reserve University, US, describes the work as interesting and elegant. ‘While these graphene fiber springs serve as ideal building blocks for the development of novel stretchable circuits, magnetostriction switches and large displacement actuators with an unprecedentedly high actuation rate – over 4 times faster than natural muscle – their practical applications will not be realised if there is no large-scale production capability for graphene fibre springs at a relatively low cost. Continued research and development in this exciting field will be of great value.’





This article is free to access until 19 September 2014. Download it here:

H Cheng et al, Nanoscale, 2014, DOI: 10.1039/c4nr03409k

Related Content

Graphene robot has some smooth moves

27 October 2011 News Archive

news image

Scientists have added a graphene layer to a polyethylene actuator to convert IR into energy to move the actuator

Vibrations couple light to graphene

11 December 2013 Research

news image

Independent teams realise that graphene rippled by sound waves is better at converting light to surface plasmons

Most Read

Higher levels of some metals in e-cigarette smoke

8 September 2014 Research

news image

Scientists call for regulators to help clear smoke and mirrors surrounding vaping safety

Isotope effect produces new type of chemical bond

22 October 2014 Research

news image

Evidence emerges for vibrational bond first proposed 30 years ago

Most Commented

Indian U-turn on diabetes drug ban

16 August 2013 News and Analysis

news image

Suspension of cheap and popular medicine reversed but will now come with new safety warnings

DNA waves don't wash

10 July 2013 The Crucible

news image

Philip Ball asks why a spectacular claim seems to have been overlooked. Sometimes science doesn’t work the way it’s suppo...