Graphene springs into action

Graphene springs are made by wrapping wet graphene fibres around cylindrical objects before annealing them at 500 °C

Researchers in China are hoping to expand the unconventional applications of graphene with their introduction of graphene springs that can function as actuators.

Springs are fundamental components in numerous electronic and mechanical systems. Most commercial springs are made of metal. Carbon-based springs, however, are less advanced, but have the potential to be a lightweight option if their poor elasticity can be tackled.

Now, graphene springs made by Liangti Qu and colleagues, at the Beijing Institute of Technology, succeed where traditional carbon-based springs have failed.

They can be elongated to 480% of their original size and maintain a stable elasticity coefficient even after being stretched 100,000 times to 300% of their original size. ‘Whether you compress them or stretch them, the springs always recovers to their original state without obvious deformation,’ says Qu.

Qu explains that not only are the springs very light with high thermal and electrical conductivity, they are easy to functionalise and tolerant to harsh conditions. In this study, the springs were made to be around 10cm long but Qu says there is no limit on their length. 

The springs were made by wrapping wet graphene fibres around a glass bar before annealing them at 500 °C. Applying a voltage causes the charged loops to repel each other and can elongate the springs to more than twice their original size. If the graphene springs are functionalised with magnetic particles they can be actuated in response to a magnetic field to act as magnetostrictive switches – a property the researchers demonstrated by incorporating a spring into a simple circuit containing an LED and a battery.

Functional materials specialist Liming Dai, of Case Western Reserve University, US, describes the work as interesting and elegant. ‘While these graphene fiber springs serve as ideal building blocks for the development of novel stretchable circuits, magnetostriction switches and large displacement actuators with an unprecedentedly high actuation rate – over 4 times faster than natural muscle – their practical applications will not be realised if there is no large-scale production capability for graphene fibre springs at a relatively low cost. Continued research and development in this exciting field will be of great value.’





This article is free to access until 19 September 2014. Download it here:

H Cheng et al, Nanoscale, 2014, DOI: 10.1039/c4nr03409k

Related Content

Graphene robot has some smooth moves

27 October 2011 News Archive

news image

Scientists have added a graphene layer to a polyethylene actuator to convert IR into energy to move the actuator

Vibrations couple light to graphene

11 December 2013 Research

news image

Independent teams realise that graphene rippled by sound waves is better at converting light to surface plasmons

Most Read

UC Davis chemist sentenced to four years over explosion

19 November 2014 News and Analysis

news image

Postdoc sentenced over attempt to make explosive device and reckless disposal of hazardous waste

Spanish fly

10 October 2013 Podcast | Compounds

news image

Helen Scales looks at cantharidin, the active ingredient in this famous aphrodisiac

Most Commented

Beetle behind breath test for bank notes

17 November 2014 Research

news image

Photonic crystal inks inspired by longhorn beetle could help to fight counterfeiting

Bayer wins race to buy Merck & Co consumer care

9 May 2014 Business

news image

$14bn deal will make Aspirin inventor the number two over-the-counter healthcare company