Next Mars rover will make oxygen from CO2

Nasa’s Mars 2020 rover will take a small step towards helping us directly explore the red planet, by studying how to convert its carbon dioxide atmosphere to oxygen. Jack Mustard from Brown University in the US suggests the Mars Oxygen In-situ resource utilization Experiment (MOXIE) technology could in future help refuel vehicles returning to Earth. ‘It represents an opportunity to sever the tether between Earth and exploration,’ says Mustard, who chaired the Mars 2020 science definition team.

Based on the current Curiosity rover’s design, Mars 2020 will carry seven instruments, including MOXIE, together costing approximately $130 million (£77 million). MOXIE itself will be a reverse fuel cell, developed at the Massachusetts Institute of Technology, converting CO2 into oxygen and carbon monoxide via solid oxide electrolysis. The oxygen can then either be breathed by people, or burned as fuel.

The design of Mars 2020 is based on the Curiosity rover, but it will carry more sensitive instruments © Nasa

The Mars 2020 mission’s other themes include assessing its landing site’s geology, and searching for signs of ancient Martian life. To achieve that it will carry an analytical arsenal for studying both mineral and organic – and therefore potentially once living – matter.

Los Alamos National Laboratory, in New Mexico, will lead development on SuperCam, the successor to Curiosity’s ChemCam imaging and chemical analysis tool. Like ChemCam, SuperCam will use Laser-Induced Breakdown Spectroscopy (LIBS), which can determine a target’s elemental composition from over six metres away. As well as visible and infrared spectroscopy analysis of reflected light, it will add Raman and time-resolved fluorescence spectroscopy.

The Planetary Instrument for X-Ray Lithochemistry, PIXL, will be an x-ray fluorescence spectrometer mounted on a robotic arm so it can be placed next to targets. It displaces α-particle x-ray spectrometers (APXS) used by Curiosity and previous missions, Nasa’s Mitch Schulte tells Chemistry World. PIXL offers ‘two orders of magnitude better spatial resolution, higher sensitivity and accuracy, and the capability to detect and quantify 10 additional elements,’ he explains.

Raman on Mars

NASA will also develop the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) ultraviolet (UV) laser spectrometer. It will be the first UV Raman spectrometer on Mars’ surface, and its ability to detect organic ring structures will be important in hunting for life.

However, Mustard – who helped set Mars 2020’s science goals but didn’t select its payload – is troubled by the use of Raman spectroscopy. ‘I’m speaking from limited knowledge of these instruments, but I’m concerned that relying on unproven technologies will mean it takes a lot of time to accomplish the goals. We recommended that there be an ability to measure the mineralogy of the site efficiently. Curiosity is painfully slow in being able to get at the hard-core science measurements.’ Schulte sought to defuse this concern. ‘Development of Raman instruments for flight has been ongoing for a number of years and has become sufficiently mature,’ he says.

Mars 2020 takes its place in a procession of probes headed for our neighbour planet. After its 2016 launch Nasa’s next mission, InSight, is set to study the planet’s deep interior for the first time.

Related Content

Curiosity to take off

28 October 2011 Premium contentFeature

news image

When Nasa's latest Mars rover is launched into space later this year, it'll carry the most advanced analytical instruments ev...

Curiosity detect hints of complex organics

7 December 2012 News and Analysis

news image

Mars rover picks up chlorinated hydrocarbons on the Red Planet, but are they native or did they hitch a ride?

Most Read

Antimicrobial resistance will kill 300 million by 2050 without action

16 December 2014 News and Analysis

news image

UK report says resistance will cost global economy $100 trillion

Cutting edge chemistry in 2014

10 December 2014 Research

news image

We take a look back at the year's most interesting chemical science stories

Most Commented

Smart skin for prosthetic limbs senses heat and touch

12 December 2014 Research

news image

Ultra-thin plastic skin can bend and flex without affecting the skin's ability to detect stimuli

Chemistry behind the ‘blue man’ unlocked

1 November 2012 Research

news image

Biochemical model suggests that silver ions, not nanoparticles, cause a rare skin complaint