Infrared camouflage that sticks

Cuttlefish and other cephalopods are some of nature’s best camouflage artists © Shutterstock

US scientists have developed an adhesive tape that can help objects match the infrared reflectance of their surroundings and disguise them from being seen by infrared cameras. The flexible coating – based on a protein found in cephalopod skin – can moderate reflectance simply by stretching and may find application in military camouflage kit.

Cephalopods – such as squid, octopuses and cuttlefish – are nature’s masters of disguise. Their skins contain iridophores, cells that reflect and manipulate incident light to spectacular effect. Their plasma membranes fold to encompass lamellar-like platelets containing reflectin. Reversible phosphorylation of reflectin changes the size and structure of the lamellae, changing the iridophore’s reflectance across the visible spectrum.

Alon Gorodetsky’s group at the University of California, Irvine, has developed a method for coating a thin-film of reflectin onto the surface of a flexible and transparent adhesive substrate layered with graphene oxide. These ‘stickers’, transparent under normal light, can be stuck onto any surface, including conventional camouflage with precise patterning. The reflectance can be controlled by stretching, and upon heating, the inexpensive material returns to its original state. ‘The protocols for making it are very scalable – putting a thin film on a standard roll of tape isn’t difficult and requires fairly little material so it shouldn’t be much more expensive than ordinary sticky tape one finds in their desk,’ Alon tells Chemistry World.

Stretching shifts the coating's colouration and reflectance

The coating is transparent so underlying camouflage patterns are clearly visible

Besides stealth applications, Gorodetsky suggests that advanced versions of these materials might be used in glass coatings to regulate seasonal temperature. The team are keen to push the reflectance of reflectin-inspired materials as far as possible into the thermal infrared. ‘We hope to eventually develop autonomous clothing-integrated devices that will regulate how a person radiatively exchanges heat with their environment.’ The potential applications are exciting: ‘Wouldn’t it be neat if you had a jacket which could adapt to keep you cool on warm days and warm on cold days?’ adds Gorodetsky.

Jason Slinker, an optoelectronic materials expert at the University of Texas at Dallas, US, says the material should draw great interest from the apparel industry. ‘Such a stable, reversible, responsive, and inexpensive means of enhancing clothing with broad color changing capabilities will have applications in safety and camouflage as well as aesthetic implications in fashion.’


This article is free to access until 2 April 2015. Download it here:

L Phan et al, J. Mater. Chem. C, 2015, DOI: 10.1039/c5tc00125k

Related Content

Learning from the masters

2 March 2015 Feature

news image

By unpicking how cephalopods change their looks to match their environment, researchers are aiming to reverse-engineer a host...

Squid skin material invisible to infrared cameras

12 August 2013 Research

news image

Cephalopod-inspired surface can tune its reflectivity using chemical stimuli

Most Commented

Ethanol to butanol conversion shows sustainable potential

13 January 2016 Research

news image

Borrowed hydrogen chemistry drives reaction to obtain useful fuel from biomass

Injectable foam repairs bones

22 December 2015 Research

news image

Scientists say biomaterial could treat bone defects and diseases