Close encounter makes modifying proteins easy


21 January 2011

Chemically modifying proteins is fundamental to biochemical research, but it is far from easy to get the result you want. Chemists in the US have now developed a powerful strategy for selectively modifying the side-chains of proteins, which they hope will enable the creation of new tools to investigate protein interactions involved in human diseases. 

Modifying the side-chains of the amino acids that make up proteins is straightforward enough, but as a particular type of side-chain may appear many times in a given protein, modifying just one of them is a tough challenge. Brian Popp and Zachary Ball at Rice University, Houston, have been using the ideas of chemical reactivity and reaction design to try and solve this problem. 

In their elegant solution, they decided to dispense with the standard approach of designing a highly selective reagent. Instead, they used a reagent that is hardly selective at all, but one that only works in the presence of a rhodium catalyst. 

The clever bit is to place the catalyst exactly where it's needed by attaching it to a coiled peptide that binds to the right bit of the target protein. This brings the catalyst and the side-chain into close proximity, allowing them to react as soon as the reagent - a diazo derivative of styrene - is added. 

Close encounter makes modifying proteins easy

The matched pair of coiled proteins (yellow), with the catalytic unit (left) and the side-chain of glutamine (right) ready to react

Ball thinks that this approach is 'a big step forward'. He says that its main benefit is that the high reactivity of the diazo compound allows it to react with the side-chains of over half the naturally occurring amino acids, 'a broader range than any established method,' he says. The method is also highly specific, as any catalytic units that start to react where they are not wanted are quickly destroyed by reaction with water, which is the solvent for the reaction. 

Ball says that as well as looking to establish the robustness of their new method, future work may involve investigating how it could be used to tag, image, or modify the structure or function of natural proteins. He adds, 'we believe this work will create powerful tools to investigate transient protein interactions, such as those along signalling pathways that lead to human disease.' 

Carlos Barbas, Kellogg Professor of Molecular Biology at the Scripps Research Institute, La Jolla, US, is enthusiastic about the work, and says 'it's a beautiful example of how peptide structure can be used to modify side-chain reactivity to allow for specific peptide labelling.' 

David Barden 

 

Interesting? Spread the word using the 'tools' menu on the left.

Link to journal article

Proximity-driven metallopeptide catalysis: Remarkable side-chain scope enables modification of the Fos bZip domain
Brian V. Popp and Zachary T. Ball,Chem. Sci., 2011, 2, 690
DOI: 10.1039/c0sc00564a

Also of interest

Protein

Modified protein binders give shortcut to drugs

19 January 2011

Attaching polypeptides to small molecules can significantly increase the specificity and affinity of protein binders


The interface between HIV-1 integrase and cellular cofactor LEDGF/p75

Instant insight: The path of least resistance

07 November 2008

If targeting a virus directly promotes drug resistance, why not take a different approach?


Related Links

Link icon Comment on this story at the Chemistry World blog
Read other posts and join in the discussion


External links will open in a new browser window