Chemical mystery of antifungal compound solved

09 March 2011

US researchers have applied synthetic organic chemistry to crack a mystery that has baffled scientists for more than 50 years: how the powerful, naturally occurring antifungal compound amphotericin B interacts with sterols in cell membranes.

The work, carried out by Martin Burke's group at the University of Illinois at Urbana-Champaign, could open the way to reducing amphotericin's toxic side effects, and to developing new drugs to replace faulty proteins in human cells - as a kind of molecular prosthesis.

Amphotericin, a macrocycle found in certain bacteria, is a potent antifungal agent that forms molecular pores in yeast cell membranes. These channels allow ions to flow out of the cell, eventually killing it. This is intriguing because ion channels are usually formed by proteins. Ion channel dysfunction is implicated in many diseases - such as cystic fibrosis - and the possibility of using a small molecule to create a replacement ion channel is an enticing one.

Ion channel formed by amphotericin and ergosterol

The mycosamine sugar unit (blue) is the crucial link between amphotericin (black) and ergosterol (green) that lets it form ion channel pores

© M Burke

However, until now a key aspect of amphotericin's molecular action has remained stubbornly unresolved. The molecule requires sterols - such as cholesterol or its fungus-specific relative ergosterol - to be present in the cell membrane for it to form ion channels and to kill fungal cells. But whether amphotericin binds directly to the sterols, or whether the sterols act indirectly has been impossible to ascertain. 

Burke's team resolved this question by carrying out a highly sensitive assay - isothermal titration calorimetry - that can measure the tiny amounts of heat released during molecular binding events. The results showed unequivocally that direct binding occurs. 

Using painstaking synthetic techniques, the researchers then created derivatives of amphotericin by systematically deleting two functional groups - a carboxylic acid and a mycosamine sugar group - which have been postulated to be involved in sterol binding. 'This process of deletion was extremely difficult because the molecule has multiple hydroxyl groups that need to be protected, and a polyene region that is susceptible to attack,' Burke says. 

The binding test was repeated with the derivatives, showing that it is the sugar group alone that is needed for sterol binding to form ion channels and to kill fungal cells. 

'We can now focus on ways to modify the molecule to reduce its toxic side effects as a drug,' says Burke. 'We can also start to examine more closely its ability to form ion channels, which could open the way to developing other small molecules that could act in this way and replace damaged ion channels.' 

Andrew Myers, an expert in natural antibiotic compounds at Harvard University in Boston, US, says that the pathways of 'molecular editing' that Burke's group developed to create the amphotericin derivates are 'remarkable'. Myers adds, 'This work sheds light on structure-function relationships in one of the most important antifungal agents in use today.' 

Simon Hadlington 


Interesting? Spread the word using the 'tools' menu on the left.


D S Palacios et alProc. Natl. Acad. Sci., 2011, DOI: 10.1073/pnas.1015023108

Also of interest

Perforin pore

Kiss of death for cancer cells

31 October 2010

Scientists have deciphered the surprising structure of the perforin pore, which delivers lethal enzymes that kill cancer cells in the body


Nanoparticles allow remote control of cells

27 June 2010

Remote heating of magnetic nanoparticles can target temperature-sensitive components of cells and whole organisms

Triggering drug delivery

New 'on-off' membrane for drug delivery

14 September 2009

Nanomagnetic particles embedded in membrane can be remotely heated to cause gel-filled channels to open and close on demand

Related Links

Link icon Comment on this story at the Chemistry World blog
Read other posts and join in the discussion

External links will open in a new browser window