Volume 108, 1997

Spiers Memorial Lecture On Dynamics From isolated molecules to biomolecules

Abstract

We address the dynamics of electronic–vibrational excited states in isolated molecules, clusters, condensed phase and biosystems, which pertain to the phenomena of energy acquisition, storage and disposal as explored from the microscopic point of view. The advent of femtosecond dynamics opened up new horizons in the exploration of chemical and biophysical processes on the timescale of nuclear motion. These ultrafast radiationless processes involve isolated molecules, where ultrafast ‘nonreactive’ intramolecular internal conversion can occur on the timescale of vibrational motion, while ‘reactive’ dissociation and Coulomb explosion manifest the sliding down on the repulsive nuclear surface. In some cluster and condensed phase systems ultrafast energy dissipation processes, manifesting collective large nuclear configurational changes, bear analogy to the molecular ‘reactive’ dynamics, but can concurrently maintain vibrational phase coherence induced by nuclear impact. For ultrafast dynamics in clusters, in the condensed phase and in the protein medium, separation of timescales for nuclear dynamics may prevail. Interstate and energy relaxation are understood, while the interplay between relaxation and dephasing is of considerable interest. The ubiquity of vibrational and electronic coherence effects, ranging from small to huge systems, raises the conceptual question of the distinction between the experimental conditions of the preparation and interrogation, and the intrinsic aspects of relaxation and dephasing dynamics. These are some of the central aspects of the novel and fascinating area of femtosecond chemistry, whose conceptual framework rests on a unified theory and simulation of intramolecular, cluster, condensed phase and biophysical dynamics.

Article information

Article type
Paper

Faraday Discuss., 1997,108, 1-22

Spiers Memorial Lecture On Dynamics From isolated molecules to biomolecules

J. Jortner, Faraday Discuss., 1997, 108, 1 DOI: 10.1039/A801832D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements