Issue 17, 2003

NMR studies of phosphorus chalcogenide–copper iodide coordination compounds

Abstract

The local structures of the new phosphorus chalcogenide – copper iodide coordination compounds (CuI)P4Se4, (CuI)2P8Se3, (CuI)3P4Se4, and (CuI)3P4S4 are investigated using comprehensive 63Cu, 65Cu, and 31P magic angle spinning NMR techniques. Peak assignments are proposed on the basis of homo- and heteronuclear indirect spin–spin interactions, available from lineshape analysis and/or two-dimensional correlation spectroscopy. In particular, the 31P-63,65Cu scalar coupling constants have been extracted from detailed lineshape simulations of the 31P resonances associated with the Cu-bonded P atoms. In addition, the RNνn pulse symmetry concept of Levitt and coworkers has been utilized for total through-bond correlation spectroscopy (TOBSY) of directly-bonded phosphorus species. The resonance assignments obtained facilitate a discussion of the 31P and 63,65Cu NMR Hamiltonian parameters in terms of the detailed local atomic environments. Analysis of the limited data set available for this group of closely related compounds offers the following conclusions: (1) bonding of a special phosphorus site in a given P4Xn (X = S, Se) molecule to Cu+ ions shifts the corresponding 31P NMR signal upfield by about 50 ppm relative to the uncomplexed molecule, (2) the magnitude of the corresponding scalar 31P-63,65Cu spin–spin coupling constant tends to decrease with increasing Cu–P distance, and (3) the 63,65Cu nuclear electric quadrupolar coupling constants appear to be weakly correlated with the shear strain parameter specifying the degree of local distortion present in the four-coordinated [CuI2P2] and [CuI3P] environments. Overall, the results illustrate the power and potential of advanced solid state NMR methodology to provide useful structural information in this class of materials.

Article information

Article type
Paper
Submitted
31 Mar 2003
Accepted
01 Jul 2003
First published
30 Jul 2003

Phys. Chem. Chem. Phys., 2003,5, 3768-3776

NMR studies of phosphorus chalcogenide–copper iodide coordination compounds

G. Brunklaus, J. C. C. Chan, H. Eckert, S. Reiser, T. Nilges and A. Pfitzner, Phys. Chem. Chem. Phys., 2003, 5, 3768 DOI: 10.1039/B303610N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements