Issue 19, 2004

Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors

Abstract

The apatite-type phases, La9.33+x(Si/Ge)6O26+3x/2, have recently been attracting considerable interest as potential electrolytes for solid oxide fuel cells. In this paper we report results from a range of doping studies in the Si based systems, aimed at determining the key features required for the optimisation of the conductivities. Systems examined have included alkaline earth doping on the rare earth site, and P, B, Ga, V doping on the Si site. By suitable doping strategies, factors such as the level of cation vacancies and oxygen excess have been investigated. The results show that the oxide ion conductivities of these apatite systems are maximised by the incorporation of either oxygen excess or cation vacancies, with the former producing the best oxide ion conductors. In terms of samples containing cation vacancies, conductivities are enhanced by doping lower valent ions, Ga, B, on the Si site. The presence of higher valent ions on these sites, e.g. P, appears to inhibit the incorporation of excess oxygen within the channels, and so limits the maximum conductivity that can be obtained. Overall the results suggest that the tetrahedral sites play a key role in the conduction properties of these materials, supporting recent modelling studies, which have suggested that these tetrahedra aid in the motion of the oxide ions down the conduction channels by co-operative displacements.

Graphical abstract: Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors

Article information

Article type
Paper
Submitted
27 Jan 2004
Accepted
24 Feb 2004
First published
03 Aug 2004

Dalton Trans., 2004, 3106-3109

Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors

A. Najib, J. E. H. Sansom, J. R. Tolchard, P. R. Slater and M. S. Islam, Dalton Trans., 2004, 3106 DOI: 10.1039/B401273A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements