Issue 21, 2005

On the mechanism of methyl-coenzyme M reductase

Abstract

Methyl-coenzyme M reductase (MCR) catalyzes the reaction of methyl-coenzyme M (CH3–SCoM) and coenzyme B (HS–CoB) to methane and the corresponding heterodisulfide CoM–S–S–CoB. This unique reaction proceeds under strictly anaerobic conditions in the presence of coenzyme F430, a Ni-porphinoid. MCR is a large (αβγ)2 heterohexameric protein complex containing two 50 Å long active sites channels. Coenzyme F430 is embedded at the channel bottom and the substrates CH3–SCoM and HS–CoB bind in front of F430 into a solvent free and hydrophobic channel segment. Two principally different catalytic mechanisms are currently discussed. Mechanism I is based on a nucleophilic attack of Ni(I) onto the methyl group of CH3–SCoM yielding methyl–Ni(III) and mechanism II on an attack of Ni(I) onto the thioether sulfur of CH3–SCoM generating a Ni(II)–SCoM intermediate. Both mechanisms are discussed in the light of a large number of data collected about MCR over the last twenty years.

Graphical abstract: On the mechanism of methyl-coenzyme M reductase

Article information

Article type
Perspective
Submitted
12 May 2005
Accepted
13 Jun 2005
First published
13 Sep 2005

Dalton Trans., 2005, 3451-3458

On the mechanism of methyl-coenzyme M reductase

U. Ermler, Dalton Trans., 2005, 3451 DOI: 10.1039/B506697B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements