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Plasticity of a gras coal as a function of heating rate
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TAR REACTIONS
CRACKING EQUATIONS

Hydromethanation R-CH3 + H, — RH + CH4

Condensation R-OH + R’-H — R-R’ + H,O

R-H + R’-H — R-R' + H,




Reduction agent consumption (kg/t hot metal)

Figure 1: Carbon usage in blast furnace ironmaking and
associated technology developments over the last 50 years
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COMBUSTOR

GAS TURBINE
AND GENERATOR

ELECTRICITY

STEAM TURBINE
1 AND GENERATOR
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PFBC system for power generation using a combined cycle
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The British Coal Topping Cycle
with COz2removal

NO, formation in coal combustion
About 50% of the NO, comes from

nitrogen in volatiles from coal
30% from nitrogen in char
20% from atmospheric nitrogen
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Behaviour of fuel nitrogen
in fluidised combustion
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Computational Fluid Dynamics - Combustion

The commercial FLUENT CFD code is used in the development and
optimisation of burner and furnace design

Simulation of

= Single Burner and Full Fumace
= Multi-fuel Combustion

= Air and Oxyfuel Firing

Sensitivity Studies

« Air Staging, Rebum, SNCR
= Fuel Type

- Fuel and Air Distribution

= Fuel Fineness

Page 55
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Prediction of

+ Flow Field, Flame Interaction
= Coal Bumout, Heat Release

+ Pollutant Formation (NO,, CO)
= Fuel and Air Mixing
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Clean Coal Power Plant

Advanced Supercritical

Pulverised Coal Boiler e

/Steam Turbine
350-1000MW

+ Best Available Technology now 46/47% efficient (290 bar/600C/610C), cf 35%

- Advantages are proven Availability (>95%), Load Flexibility (20-100%) and
wide fuel range (inc Biomass cofiring up to 20%)

+ Matches any other coal technology for emissions, easily meets LCPD limits

» Can be built now, designed to be “capture ready” and fitted with economical
€O, capture when CCS is possible

- Technology of choice for vast majority of new build orders

Page 23
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Abatement of CO, by efficiency improvement of Pulverised Coal Plant
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I SCPC Plant - PRB Coal
(basis EPRI Report 1014924)
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SCPC Plant — PRB Coal with 90% CCS using
Generic MEA Capture Process

‘basis EPRI ReBort 1014924'

The water-gas reaction :-
C +H,0 -~ H, + CO - heat + 131.6kJ/mol

heat for the reaction can be provided externally
or by combining the reaction with combustion reactions:-
C +0, —~ CO, + heat -94.1k/mol

The water- shift reaction,
CO + H,0 - H, + CO, + heat -41.7kJ/mol
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Siemens Fuel Gasifier (SFG) Standard Design

° COOIIng Screen Coall.Feedstock
H Steam
— short start-up / shut-down Venturi Partial
— |0W mal ntenance 1P Steam Wash Condenser

— high availability

— high conversion rate
* Full quench

— simple and reliable

— ideal for CO sour shift %y
 Dry feeding 0

— high efficiency

Raw Gas to
CO Shift &
gas cleaning

Raw Gas
170 to 230°C

Vent Gas

Waste Water

' Sludge
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Development of IGCC net plant
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IGCC with CO, Removal

“Sour” Syngas
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arbon Capture by Oxyfuel firing on Pulverised Coal Plant

02/C0O; recycle {oxyfuel) combustion capture

steam turbine
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Full scale modelling
500MWe boiler

_ :
Looking at oxygen enhancement and oxyfuel combustion
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Test facility scale
modelling

%: Large Eddy

= - Simulations

RANS

Temperature on flame surface
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l CO, Capture in Coal Power Systems
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A Roadmap for CO, Capture
and Storage

Now Objective

“Small” demos Complete larger scale Commercial
(1.7 MW Ammonia, etc.) capture demos availability CCS

Bench-scale — post- Start larger scale demos Start multiple full
combustion capture — capture and storage scale demos

Needs: Multiple large-scale CAPTURE and STORAGE demos
Timing: 2020 objective = start today, parallel paths

Realistic? A challenge — need technical, policy, funding alignment

Source: DOE-NETL Carbon Sequestration R&D Roadmap
Modified to add Chilled Ammonia example

McKinsey: Gap for economic
feasibility of CCS to be filled inthe

Commercial phase:
%0 Cost of CCS expected
to be in the range of the
future carbon price

e
//80
/4: S
Demonstration 70
phase:

Not economic on
standalone basis 150 4
4

Econonic gap

40 -

30 -
20 -
Source: McKinsey
10 A
Demonstration Early Mature
0 bhase (2015) e roial commercial!
phase (2020+) pase (2030+)

* Carbon price for 2015 from 2008-15 estimates from Deutsche Bank, New Carbon Finance, Soc Gen, UBS,Point Carbon,assumed constant afterwards
Source: Reuters; Team analysis



Central oil availability
Minimum oil availability
Central coal availability
Minimum coal availability
Central nuclear availability
Minimum nuclear availability

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Estimates of available UK generating capacity (in GW)

Note: This figure is based on a graph contained in EdF’s submission to the UK
government’s

Energy Review in 2006. The statistics were based on views and plausible
future scenarios at

the time of submission

The scale of the challenge for
target emissions reductions

695 Mt CO,e

Internafional aviation
& shipping”

UK non-CO, GHGs

Other CO,

Industry (heat &

industrial processes) T7% cut

(= B0% vs. 1990)

Residential &
Commercial heat

Domestic transport
159 Mt GO.e

Electricity Generation

. 2006 emlsslons 2050 objective
* bunker fuels basis

Source: UK National Atmespheric Emissions Inventary (2008).
UK CCC Page 38, Figure 2.1
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Worldwide Market Scenario in
2015

» Transit Buses*
130,000-150,000 buses in service
* Light Duty Vehicles*
17- 80 million vehicles in service
* Hydrogen Required?
2.5 -9 million tonnes per year
* Current Largest Merchant H, Plant
100,000 tonnelyear

Sources:

*UBS Warburg Global Equity Research, Ballard June
2000

tOGDEN et al, Princeton University
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Hydrogen for Transport

Biomass

Renewable electricity
Electricity - nuclear or coal
Nuclear - chemical cycles
Coal gasification

The water-gas reaction :-
C +H,0 —<H, + CO - heat + 131.6kJ/mol

The water- shift reaction,
CO + H,0 - H, + CO, + heat -41.7kJ/mol

CaO + CO, —~ CaCO; +heat -178k3/mol
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solid fuel hydrogen + methane
(water) — ™ AER — %ﬂﬂcg
650°C
> —
/ \
| ca0 CaCO, |
I'-,_ ;__.'
N S
N AER ul
fugl ————m 650°C flue gas containing
air —————#» = CO,
800°C
What UCG
Involves
[ e :1;:;:’::3;7
redu[ging oxidation
drying and pyrolylsls
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Worldwide activities
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The scale of the challenge for
target emissions reductions

695 M1 CO,e

Internafional aviation
& shipping”

UK non-CO, GHGs

Other CO,
Industry (heat &
industrial processes) 77% cut
(= 80% vs. 1990)
Residential &

Commercial heat

Domestic transport
139 Mt GOe

Electricity Generation

2006 emlsslons 2050 objective
* bunker fuels basis

Source: UK National Atmespheric Emissions Inventary (2008).
UK CCC Page 38, Figure 2.1
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