EDUCATION DIVISION PUBLICATIONS The following publications can be obtained ONLY from: The Assistant Education Officer, The Chemical Society, Burlington House, London, WIV OBN, and should be ordered separately from other publications. #### CHEMICAL EDUCATION AT THE TERTIARY LEVEL Proceedings of a Symposium, 1971 50p (Education Division Members 25p) THE ROLE AND NATURE OF EXPERIMENTAL WORK IN CHEMISTRY COURSES Proceedings of a Symposium, 1972 £1.00 (Education Division Members 50p) THE DISCIPLINE OF CHEMISTRY - ITS PLACE IN EDUCATION Proceedings of a Symposium, 1973 £2.00 (Education Division Members £1.00) CHEMICAL EDUCATION IN INDUSTRY Proceedings of a Symposium, 1973 £1.50 (Education Division Members 75p) THE COMMUNICATION OF CHEMISTRY Proceedings of a Symposium, 1974 £1.50 (Education Division Members 75p) ENTRY TO CHEMISTRY COURSES AT THE TERTIARY LEVEL A brief survey of GCE 'A' Level Chemistry syllabuses 10p **OBJECTIVE TESTING - A WORKSHOP REPORT** £2.00 (Education Division Members £1.00) STATISTICS OF CHEMICAL EDUCATION (2nd Edition) A pictorial summary of chemical education statistics from school to post-graduate level £3.00 (Chemical Society Members £2.00) A CATALOGUE OF UNPUBLISHED TEACHING RESOURCE MATERIAL IN CHEMISTRY £1.50 (Education Division Members £1.00 Educational Techniques Subject Group Members 60p) PROGRESS IN CHÉMICAL EDUCATION Proceedings of a Conference, 1974 £2.00 (Education Division Members £1.50) PROBLEMS OF INNOVATION Proceedings of a Symposium, 1975 £2.50 (Education Division Members £1.25) INDEPENDENT LEARNING IN TERTIARY SCIENCE EDUCATION Proceedings of a Conference, 1975 £2.00 (Education Division Members £1.00) EDUĆATIONAL TECHNIQUES IN THE TEACHING OF CHEMISTRY Proceedings of a Symposium, 1975 £2.00 (Education Division Members £1.00) RESEARCH IN ASSESSMENT Proceedings of a Symposium, 1975 £2.50 Education Division Members £1.50) CAREERS LEAFLETS Single copies (gratis) upon request. ### SYMMETRY IN **CHEMISTRY** SIDNEY KETTLE CHEMISTRY CASSETTE #### **CHEMISTRY CASSETTES** General Editor: Peter Groves The University of Aston in Birmingham | The state of s | CHEMICAL SOCIETY LIBRARY Glass No. 541.63 | |--|---| | | Acc. No. 780241 | | | 80urce
Okt629.:X. 79. Price | Published 1976 by the Educational Techniques Subject Group, The Chemical Society, London. © Sidney Kettle 1976 ISBN 0 85186 729 4 All Chemistry Cassette materials are copyright and the tape recording and the booklet may not be copied or reproduced in any way without the written permission of the Educational Techniques Subject Group. The materials are sold on the express condition that they are to be used for educational purposes only. They may not be used for commercial gain or be hired out for this or any other purpose without the prior written permission of the Educational Techniques Subject Group. The views expressed in this booklet and in the associated tape recording are those of the author and not necessarily those at the Chemical Society. #### **USING CHEMISTRY CASSETTES** #### Please read this carefully before you start This Chemistry Cassette presentation comprises two audio-cassettes with this accompanying workbook. They are designed to be used together and you should have the workbook in front of you as you listen to the cassettes. Material in the workbook is divided into numbered *frames* and Professor Kettle frequently refers to these as he speaks. Each frame contains diagrams, tables and other relevant material and you should locate and study this wherever appropriate. During the course of the presentation you are asked, from time to time, to stop the tape and to work on some problems: you should, therefore, also have pencil and paper with you. Two of the problems ask you to make observations on a small cube and on a model of the water molecule. You should have these ready before you start. For the cube, a child's building brick would be suitable provided that all the faces are the same colour. Instructions for making a cube from a piece of card are given in frame 10. For the water molecule (which is considered at the start of the second cassette) a simple ball and stick model would be quite adequate. If this is not available, a model made from three balls of plasticine and two matchsticks would be equally suitable. An important feature of tape recorded material is that it is 'self-pacing'. This means that you can work through it at your own pace, switching off the player whenever you wish to pause for thought, to study a diagram, to work on a problem, etc., and you can use the rewind control on the player to repeat material that you may not have fully understood on a first hearing. To gain the greatest benefit from this presentation you should make full use of these features. You should also make appropriate notes to supplement the material contained in the workbook. | Part | Side | Approximate running times | Corresponding frame numbers | |------|------|---------------------------|-----------------------------| | 1 | Α | 20 mins. | 1 – 10 | | | В | 21 mins. | 11 – 28 | | 2 | Α | 38 mins. | 29 – 44 | | | В | 28 mins. | 45 – 58 | ## PART 1 1 #### The ground to be covered in this presentation Symmetry elements Symmetry operations Multiplication of symmetry operations Irreducible Representations of a group Character tables Reducible representations of a group Example: The vibrations of the water molecule Selection Rules Molecular Integrals FRAME CONTINUED ON NEXT PAGE Some (simplified) definitions A symmetry element A physical manifestation of the existence of symmetry; for instance, a rotation axis or mirror plane A symmetry operation: The act of carrying out the operation implied by the existence of a symmetry element. For instance, the act of rotating or the act of reflecting. In mathematical group theory (not dealt with in this treatment) symmetry operations are represented by matrices Multiplication The product of two symmetry operations is the single operation which produces the same end result as the two symmetry operations acting the one after the other. Usually given in the form of a table. A Group of symmetry operations is composed of all of the distinct symmetry operations which may occur in a multiplication table. A Character table A (square) table which contains numbers, usually integers, which, individually, characterise the behaviour of an object under a symmetry operation. The rows of a character table are called irreducible representations. Reducible representations Are sets of numbers which may be written as a sum of irreducible representations. Although not discussed in the present treatment, corresponding to each reducible representation is a set of matrices. Direct Products When the corresponding characters of two irreducible representations of a group are multiplied together (arithmetically) a representation of the group is obtained which is the direct product of the two irreducible representations which were multiplied together. Usually given in the form of a table. 2 A <u>symmetry element</u> is a physical manifestation of the existence of symmetry in an object. Examples of symmetry elements are rotation axes, mirror planes and a centre of symmetry The five types of symmetry element are:- - 1) Rotation Axes - 2) Mirror Planes - 3) A centre of symmetry - 4) Rotation reflection axes of symmetry (crystallographers prefer to call these rotation inversion axes) - 5) The identity element 4 An $S_{\underline{l}_{\underline{l}}}$ axis: consider the $S_{\underline{l}_{\underline{l}}}$ axis of allene:- Reflect in a perpendicular plane FRAME CONTINUED ON NEXT PAGE ## 7 CONTD. An S₆ axis 8 A <u>symmetry operation</u> is most simply thought of as the act of carrying out the operation implied by the existence of a symmetry element. However, symmetry operations are more pertinent to the symmetry aspects of chemistry than are symmetry elements. This is because an algebra can be constructed associated with symmetry operations but not with symmetry elements. We touch on some aspects of this algebra in the present treatment. In the top diagram the C₂ operation interchanges the corners 1 and 1' In the bottom diagram the i operation turns 1 into A (and 1' into B). The σ_h turns A into 1' (and B into 1). It follows that C_2 is equivalent to i followed by σ_h . 12 13 14 A proper rotation is a pure rotation operation. Examples are rotation by 360° (=C₁=E), by 180° (=C₂), by 120° (=C₃), by 90° (=C₄), by 72° (=C₅), by 60° (=C₆) and by 51.43° (= C₇). An improper rotation is a pure rotation combined with (i.e. preceded or followed by) the inversion operation. Examples are C₁ followed by i (=i), C₂ followed by i (= σ), C₃ followed by i (=S₃), C₄ followed by i (=S₄) and C₅ followed by i (=S₅). Note that this definition of S_n axes is in accord with the practice of crystallographers (see Frame 3). 15 The i operation interchanges the corners 1 and 7 2 and 8 3 and 5 4 and 6 to give After **17** Before the S₆ operation (the corners 1, 2 and 3 lie slightly below and 4, 5 and 6 slightly above the 'mirror plane') After the operation 21 Proper rotations of a cube E 4c₃ 3c₄ 3c₂ 6c₂ Improper rotations of a cube i 486 384 35h 65a Operations which are in the same class are either derived from a common symmetry element or derived from a set of equivalent symmetry elements. Thus, in the $^{\rm C}_{3^{\rm V}}$ point group the classes are E, $^{\rm 2C}_3$ and $^{\rm 3C}_{\rm V}$. The two $^{\rm C}_3$ operations are derived from a common symmetry element and the three $^{\rm C}_{\rm V}$ operations are derived from a set of equivalent symmetry elements. This is a practical, not mathematical, definition and covers almost all cases commonly encountered. That it is not a perfect definition is seen from Frame 33 where, for instance, in the C_3 point group the operations C_3 and C_3^2 (the latter may be thought of either as a rotation of 240° or of 120° in the opposite direction to that of the C_3 rotation. In the former case we write the two operations as C_3 and C_3^2 ; in the latter C_3^+ and C_3^-) fall into different classes. A rather better (but still not perfect) definition is that two operations are in the same class when there exists within the group some third operation which when combined with one gives the other. Thus, in the C_3 point group, a C_3 rotation followed by a (correctly chosen) C_3 gives the same nett effect as a single C_3^2 operation. Hence C_3 and C_3^2 ($\equiv C_3^+$ and C_3^-) are in the same class. In the C_3 point group, however, there exists no third operation which may be combined with C_3 to give C_3^- 2 (or, equivalently, with C_3^+ to give C_3^- 3. The correct definition of class involves a fourth operation (F) which has the property that when combined with the third (T) it gives the identity i.e. it 'undoes' the effect of the third operator (T). Two operators A and B are in the same class if a T (and F) can be chosen such that:- T followed by A followed by F gives the same effect as B on its own. With this definition T can be <u>any</u> operation in the group (including A or B). Note that the total number of operations (1+8+6+3+6+1+8+6+3+6)=48 is exactly divisible by the number of operations in any class: $\frac{48}{8}=6$, $\frac{48}{6}=8$, $\frac{48}{3}=16$. The total number of operations in a group is called the ORDER of the group. The symmetry operations of a cube comprise a group of order forty-eight. #### The ground to be covered in this presentation Symmetry elements Symmetry operations Multiplication of symmetry operations Irreducible Representations of a group Character tables Reducible representations of a group Example: The vibrations of the water molecule Selection Rules Molecular Integrals ### 29 The four elements are '1) The identity (leave alone) 2) A C₂ rotation Reflection in a 6 mirror plane (in the plane of the paper) Reflection in a second type of \$\mathscr{G}\$ mirror plane (denoted \$\mathscr{G}\$_')\$ perpendicular to the plane of the paper Second operation | | C ⁵⁴ | E | c ₂ | 6, | σ _ν ' | |-----------|------------------|---|----------------|----|------------------| | | E | E | | | | | First | c ₂ | | | | ϵ_{v} | | operation | σ _v | | | | | | | ر _۷ ' | | | | | | | C _{2▼} | B | c ₂ | €, | σ,' | |-----------|-----------------|----------------|------------------|----------------|------------------| | | E | _B | c ₂ | σ, | σ _v ' | | First | c ⁵ | c ⁵ | B | ۵,' | 6₹ | | operation | وگ | 64 | σ _γ ' | | c ₂ | | | ه ' | σ,' | ۴. | c ₂ | · · · · · | The symmetry seen in the entries in this table across the leading diagonal (shown dotted) is a characteristic of Abelian groups. Example 1; C_2 followed by G_{Ψ} So, C2 followed by G, is equivalent to G, Example 2; \mathcal{O}_{ψ} followed by \mathcal{O}_{ψ} $$H_1$$ H_2 G_2 H_3 G_4 H_3 G_4 H_4 H_4 H_4 H_5 G_4 H_5 G_4 H_5 G_4 H_4 H_5 H_4 H_5 H_5 H_6 H_7 H_8 H_8 H_8 H_8 H_9 So, G, followed by G, is equivalent to C2 | F. | Ar. | |------|-----| | KS S | | | Symmetry Operations | |---| | E | | E. Oh (There is no unique axis of highest symmetry but the axis perpendicular to the mirror plane is unique so Oh is used) | | E, i | | E, C ₂ | | E. C ₃ , c_3^2 (Note c_3^2 means c_3 carried out twice; c_4^3 means c_4 carried out | | E, C ₁ , C ₂ , C ₄ (twice; C ₁ means C ₁ carried ou thrice etc. | | \mathbf{E} , \mathbf{c}_5 , \mathbf{c}_5^2 , \mathbf{c}_5^3 , \mathbf{c}_5^4 | | E, c ₆ , c ₃ , c ₂ , c ² ₃ , c ⁵ | | E, C ₂ , C' ₂ , C'' ₂ | | E, 203, 302 | | E, 2C ₄ , C ₂ , 2C ₂ , 2C ₂ " | | E, 205, 20 ² 5, 50 ₂ | | E, 2C ₆ , 2C ₃ , C ₂ , 3C' ₂ , 3C' ₂ | | E, C ₂ , G _v , G ⁱ | | E, 203, 30° | | E, 204, 02, 204, 204 | | E, 20 ₅ , 20 ² ₅ , 5 6 ' ₄ | | E, 206, 203, 02, 30, 30, | | ε, c ₂ , i, σ _h | | E, C ₃ , C ² ₃ , G _h , S ₃ , S ⁵ ₃ | | E , c_{k} , c_{2} , c_{3}^{3} , i , s_{k}^{3} , σ_{h}^{5} , s_{k} | | E , c_5 , c_5^2 , c_5^3 , c_5^4 , σ_h , s_5 , s_5^3 , s_5^7 , s_5^9 | | \mathbf{z} , \mathbf{c}_6 , \mathbf{c}_3 , \mathbf{c}_2 , \mathbf{c}_3^2 , \mathbf{c}_6^5 , \mathbf{i} , \mathbf{s}_3^5 , \mathbf{s}_6^5 , \mathbf{o}_h , \mathbf{s}_6 , \mathbf{s}_3 | | | FRAME CONTINUED ON MEXT PAGE | Point Group | Symmetry Operations | |------------------|---| | D _{2h} | E, C ₂ , C' ₂ , C' ₂ , i, $\sigma_{\mathbf{v}}$, $\sigma'_{\mathbf{v}}$, $\sigma''_{\mathbf{v}}$ (The labels on the mirror planes are somewhat arbitrary - one might be labelled $\sigma_{\mathbf{h}}$) | | _D 3h | E, 2C ₃ , 3C ₂ , σ_h , 28 ₃ , 3 σ_d | | Dirh | E, 2C _h , C ₂ , 2C ₂ ', 2C ₂ ', i, 2S _h , \(\sigma_h\), 2\(\sigma_d\), 2\(\sigma_d\) | | D _{5h} | E, 2C ₅ , 2C ₅ ² , 5C ₂ , σ_h , 2S ₅ , 2S ₅ ³ , 5 σ_d | | ^D 6h | E, 20 ₆ , 20 ₃ , 0 ₂ , 20 ₂ , 30 ₂ , i, 28 ₃ , 28 ₆ , o _h , 3o _d , 3o _d | | D _{2d} | E, 25 ₄ , c ₂ , 2c ₂ ', 2 _d | | D _{3d} | E, 2c ₃ , 2c ₂ , i, 2s ₆ , 3σ _a | | Dia | E, 26 ₈ , 2c ₄ , 28 ₈ , c ₂ , 4c ₂ , 4σ ₄ | | D ₅ a | $E, 2c_5, 2c_5^2, 5c_2, i, 2s_{10}^3, 2s_{10}, 5\sigma_d$ | | D ₆ a | E, 2s ₁₂ , 2c ₆ , 2s ₄ , 2c ₃ , 2s ⁵ ₁₂ , c ₂ , 6c' ₂ , 6σ ₄ | | Sh | E, S ₄ , C ₂ , S ³ ₄ | | ⁸ 6 | $E, c_3, c_3^2, i, s_6, s_6^5$ | | T | E, 4c ₃ , 4c ₃ ² , 3c ₂ | | Td | r , 8c ₃ , 3c ₂ , 6s ₄ , 6 o _d | | Th | E, 4c ₃ , 4c ₃ ² , 3c ₂ , i, 4s ₆ , 4s ₆ ⁵ , 3 c _h | | 0 | E, 8c ₃ , 6c ₂ , 6c ₄ , 2c' ₂ | | Ok | E, 8c ₃ , 6c ₂ , 6c ₄ , 3c ₂ , i, 8s ₆ , 6σ _d , 6s ₄ , 3σ _h | | ī | E, 120 ₅ , 120 ₅ , 200 ₃ , 150 ₂ | | 1h | E, 120 ₅ , 120 ₅ ² , 200 ₃ , 150 ₂ , i, 128 ₁₀ , 128 ₃ , 208 ₆ , 15 $\sigma_{\mathbf{v}}$ | The sultiplication table is | °2, | E | c ₂ | σ, | σ _v ' | |----------------|------------------|-----------------------|----------------|-----------------------| | B | E | c ⁵ | σ _v | σ _v ' | | c ₂ | c ⁵ | E | ح ,' | $\sigma_{\mathbf{v}}$ | | σ, | σ _v | σ,' | E , | c ₂ | | ~ ,' | σ _γ ' | U _₹ | c ₂ | E | #### so that substitution gives | - | 1 | 1 | -1 | -1 | |----|---------------|----|----|-----| | 1 | 1 | 1 | -1 | -1. | | ı | 1
-1
-1 | 1 | -1 | -1 | | -1 | -1 | -1 | 1 | 1 | | -1 | -1 | -1 | 1 | 1 | | | | | | | | | 1 | 1 | 1 | 1 | |----|-----|----|----|----| | 1 | - 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | ı | 1 | 1 | | | | | | | | | 1 | -1 | 1 | -1 | | 1 | 1 | -1 | 1 | -1 | | -1 | -1 | 1 | -1 | 1 | | 1 | 1 | -1 | 1 | -1 | | -1 | -1 | 1 | -1 | 1 | | | • | | | | | | 1 | -1 | -1 | 1 | | 1 | 1 | -1 | -1 | 1 | | -1 | -1 | 1 | 1 | -1 | | -1 | -1 | 1 | 1 | -1 | | 1 | 1 | -1 | -1 | 1 | | | | | | | FRAME CONTINUED ON NEXT PAGE 39 A <u>representation</u> of a group is a set with the property that the members of the set multiply (using an appropriate law of multiplication - which may be ordinary multiplication, matrix multiplication or some other form of combination) in a way which is isomorphous to the multiplication (i.e. one followed by the other) of the operations of the group. In the applications with which we are concerned such representations are matrices; in this tape we largely concentrate on 1 x 1 matrices - these are ordinary numbers. Further, it is usually possible to work with the sum of those elements of the matrix which fall along the leading diagonal - the character of the matrix rather than the whole matrix. When such a set of matrices may simultaneously be reduced to a block-diagonal form we have a reducible representation of the group, when they cannot be so reduced we have an <u>irreducible representation</u>. The characters of the matrices of the irreducible representations are listed in the <u>character</u> table of a group. The totally symmetric irreducible representation of a group has a character of 1 for all operations of the group. It describes the symmetry properties of something which is turned into itself by every one of the operations of the group. | a) . | ^C 2₹ | 2 | c ₂ | σ _v | σ,' | |------|-----------------|---|----------------|----------------|-----| | | A 1 | 1 | 1 | 1 | 1 | | | A ₂ | ı | 1 | -1 | -1 | | | B 1 / | 1 | -1 | 1 | -1 | | | B ₂ | 1 | -1 | -1 | 1 | | C _{3▼} | E | 2C ₃ | 36₹ | |-----------------|---|-----------------|-----| | A ₁ | 1 | 1 | 1 | | A ₂ | 1 | 1 | -1 | | E | 2 | -1 | 0 | | · | • | | | | с ^{5р} | B | c ₂ | i | € h | |------------------|---|----------------|-----|------------| | A _g . | 1 | 1 | 1 | 1 | | Be | 1 | -1 | 1 | -1 | | A _u | 1 | 1 | -1 | -1 | | B _u | 1 | -1 | -1 | 1 | | | | | t · | | | D ^{Sp} | E | C ₂ (z) | C ₂ (x) | c ² (A) | i | ♂ (xy) | σ(y ₂) | σ(zx) | |-----------------------------------|---|--------------------|--------------------|--------------------|----|------------------------|--------------------|----------| | _ | 1 | 3 | , | • |) | • | 1 | | | A _g
B _{lg} | 1 | 1 | -1 | -1 | 1 | 1 | -1 | _1 | | B _{2g} | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1
-1 | | 2е
В3е | 1 | -1 | -1 | 1 | .1 | -ì | -1 | 1 | | A _u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | B _{lu} | 1 | 1 | -1 | -1 1 | -1 | -1 | 1 | 1 . | | B _{2u} | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | | B _{3u} | 1 | -1 | -1 | 1 | -1 | 1, | 1 | -1 | | | ' | | | : | | | | | 41 CONTD. | D _{kh} | E | 2C ₄ | c ₂ | 2C2' | 2C2" | i | 254 | $\sigma_{\rm h}$ | 2 6 d | 2 0 d | |------------------|---|-----------------|----------------|------|------------|----|-----|------------------|--------------|--------------| | Alg | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | A _{2g} | 1 | . 1 | ı | -1 | -1 | 1 | 1 | 1 | -1 | -1 | | Blg | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | ı | | B ₂₆ | 1 | -1 | . 1 | 1 | - 1 | 1 | -1 | 1 | 1 | - 1 | | Eg | 2 | _ 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | | A _{lu} | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | A ₂₁₁ | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | | B _{lu} | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | | B _{2u} | 1 | - 1 | 1 | 1 | -1 | -1 | 1 | . -1 | -1 | 1 | | E _u | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | | | i | | | | | | | | | | | T _d | E | 8C 3 | 60°a | 68 ₁₄ | 3C ⁵ | | |----------------------------------|---|------|------|------------------|-----------------|--| | A ₁ | 1 | 1 | 1 | 1 | 1 | | | A ₁
A ₂ | 1 | 1 | -1 | -1 , | 1 | | | E | 2 | -1 | 0 | 0 | 2 | | | T ₁ | 3 | 0 | -1 | 1 | -1 | | | T ₂ | 3 | 0 | 1 | -1 | -1 | | | | | | | | | | | | 3 6 _h | | |-----------------|---|----|------|-----|----|----|----|----|-------------------------|------------| | Alg | 1 | 1 | ļ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | A ₂₈ | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | . 2 | -1 | | | | | | | | | | | | | | T _{lg} | 3 | 0 | 1 | -1 | -1 | 3 | 0 | 1 | -1 | -1 | | T ₂₆ | 3 | 0 | -1 | -1 | 1 | 3 | 0 | -1 | -1 | 1 | | Alu | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1
-1 · | -1 | | A _{2u} | 1 | 1 | -1 " | 1 | -1 | -1 | -1 | 1 | -1 • | , 1 | | E _u | 2 | -1 | 0 | , 2 | 0 | -2 | 1 | 0 | -2 | 0 . | | Tlu | 3 | 0 | 1 | -1 | -1 | -3 | 0 | -1 | 1 | 1 | | 7 _{2u} | 3 | 0 | -1 | -1. | 1 | -3 | 0 | 1 | 1 | -1 | (O, is the symmetry group of the cube and of the regular octahedron) Note that for those point groups given above in which i is a symmetry operation the character table blocks into four, the corresponding characters in each block bearing a very simple relationship to each other. This arises from a relationship between the operators listed at the top of the table. Thus, in the O_h table, i is equivalent to E followed by i, 86 is equivalent to C₃ followed by i etc. (see Frame 14). FRAME CONTINUED ON MEXT PAGE | a) | °2 √ | E | c ₂ | σ _v | و ^۱ | |----|----------------|---|----------------|----------------|----------------| | | Al | 1 | 1 | 1 | 1 . | | | A ₂ | 1 | 1 | -1 | -1 | | | B ₁ | 1 | -1 | 1 | -1 | | | B ₂ | 1 | -1 | -1 | 1 | and the reducible representation c) Select the A₁ irreducible representation; multiply the characters of the reducible representation by those of the A₁ irreducible representation and add the products together, $$(1 \times 2) + (1 \times 0) + (1 \times 2) + (1 \times 0) = 4$$ d) Divide the result by the order of the group $$4/4 = 1.$$ The answer, in this case 1, is the number of A_1 irreducible components in the reducible representation (2,0,2,0). This is repeated for all the irreducible representations. Thus for the A₂ irreducible representation $$(1 \times 2) + (1 \times 0) + (-1 \times 2) + (-1 \times 0) = 0.$$ $$0/4 = 0$$ and we conclude that there are no A_2 irreducible representations in the reducible representation (2,0,2,0). f) For the B₁ irreducible representation $$(1 \times 2) + (1 \times 0) + (1 + 2) + (-1 \times 0) = 4$$ $$4/4 = 1$$ we have found that there is a B₁ component in the reducible representation (2,0,2,0). g) For the Bo irreducible representation $$(1 \times 2) + (-1 \times 0) + (-1 \times 2) + (1 \times 0) = 0$$ $$0/4 = 0.$$ That is, there is no B_2 component in the reducible representation (2,0,2,0). Thus, in summary, we have the result that the the irreducible components of the reducible representation (2,0,2,0) are $A_1 + B_1$. #### h) Consider the C_{3v} character table | C _{3v} | E . | 2C3 | 3 ♂ v | |------------------|-----|-----|--------------| | A ₁ . | 1 | 1 | 1 | | A ₂ | 1 . | 1. | -1 | | E | 2 | -1 | 0 | and the reducible representation First multiply these characters by the number of elements in the corresponding classes. Thus Now proceed as for the C2v case:- gives FRAME CONTINUED ON NEXT PAGE ## 43 CONTD. Test for $$A_1$$: $(4 \times 1) + (2 \times 1) + (0 \times 1) = 6$ The order of the group is 6 , so, $\frac{6}{6} = 1$ (A_1 component). Test for $$A_2$$: $(4 \times 1) + (2 \times 1) + (0 \times -1) = 6$ $\frac{6}{6} = 1$ so there is one A_2 component Test for E: $$(4 \times 2) + (2 \times -1) + (0 \times 0) = 6$$ $\frac{6}{6} = -$ so there is one E component. Thus, the reducible representation (4, 1, 0) has irreducible components $A_1 + A_2 + E$. | | c _{2v} | E | c ₂ | σ _v | σ _v ' | | |---|-----------------------|---|-----------------|----------------|------------------|--------------| | | A ₁ | 1 | ı | 1 | 1 | | | | A ₂ | 1 | 1 | -1 | -1 | | | | B ₁ | 1 | -1 | 1 | -1 | | | | B ₂ | 1 | -1 | -1 | .1 | | | | | | | | | | | | c ₃ v | E | 2C ₃ | 3 o v | | | | | A ₁ | 1 | 1 | ı | | | | | A ₂ | 1 | 1 | -1 | | | | | E | 2 | -1 | 0 | | | | | | | | | | | | | D _{2d} | E | 254 | c ₂ | 2C. | 2 0 d | | _ | A ₁ | 1 | 1 | 1 | 1 | 1 | | | A ₂ | 1 | ı | 1 | -1 | -1 | | | В | 1 | -1 | 1 | 1 | -1 | | | Б ₂ | 1 | -1 | 1 | -1 | . 1 | | | E | 2 | 0. | -2 | 0 | 0 | | | | i | | | | | FRAME CONTINUED ON NEXT PAGE | 1. | c _{2v} | E | c ² | ď | σ _v ' | | |----|------------------|----------------|-----------------|----------------|-------------------|-------------------------| | | | l ₄ | 2 | 0 | 2 | | | | | | | | | | | 2. | c ^S ▲ | E | c ₂ | σ _v | σ _v ' | | | | | 7 | -1 | 1 | -3 | | | | | | | | | | | 3. | C 34 | E | 2C3 | 3 ♂ v | | | | | | 7 | 1 | -1 | | | | | | | | | | | | h. | C _{3v} | E | ^{2C} 3 | 3 0 v | | | | | - | 3 | 0 | 1 | | | | | | | | | | | | 5• | D _{2d} | E | 58 [#] | c ₂ | 2C <mark>2</mark> | 2 σ _d | | | | l _k | 0 | 0 | -2 | 0 | | | | _ | | | | | | 6. | D _{2d} | E | 25 _k | c ₂ | 2C'2 | 200 | | | | | _ | _ | | | Cred x B2 46 The E operation Character = 9 The C₂ operation the 'after' positions of the arrows are of the arrows are snown dotted Character = -1 The G operation Character = 3 The σ_{v} operation Character = 1 | _C 5▲ | E | c ₂ | σ _₹ | σ,' | |-----------------------|---|----------------|----------------|-----------| | A ₁ | 1 | 1 | 1 | 1 | | A ₂ | 1 | 1 | -1 | -1 | | B ₁ | 1 | -1 | ı | -1 | | B ₂ | 1 | -1 | -1 | 1 | | | | | | | The reducible representation is | Presentation | | | | | | |--------------|-------|----------------------------|------------------|-------------------------------------|--| | | E | c ₂ | $\sigma_{\rm v}$ | σ_{v} | • | | red red | 9 | -1 | 3 | 1 | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | 9 | -1 | 3 | 1 | sum = 12; divide by
the order of the
group (4) →3.
Hence Pred contains
3A ₁ | | | | | | | | | | 1 | 1 | -1 | -1 | | | | 9 | -1 | -3 | -1 | sum = 4; hence red | | | | | | | | | | 1 | -1 | ı | -1 | | | | 9 | 1 | 3 | -1 | sum = 12; hence red contains 3B ₁ | | | | | | | - | | | 1 | -1 | -1 | 1 | | | | l'red | 2 Pred 9 1 9 9 1 9 9 1 9 9 | E C ₂ | E C ₂ O _v 1 | E C ₂ | FRAME CONTINUED ON NEXT PAGE 1 sum = 8; hence Γ_{red} contains $2B_2$ Hence | contains From the solution to problems a, b, c and m, n and o of Frame 38 (given in Frame 57) we conclude that:- a) The translations of H2O transform as $$A_1 + B_1 + B_2$$ b) The rotation of H₂O transform as Subtract these from the components of I to obtain the symmetry species of the vibrations of H20. These are $$2A_1 + B_1$$ 48 | c _{2v} | E | | | σ _ψ ' | 1 | | |-----------------|---|----|----|--------------------|--|-----------------------| | A ₁ | 1 | 1 | 1 | 1
-1
-1
1 | z, T _z R _z y, T _y , R _x x, T _x , R _y | x^2 , y^2 , z^2 | | A ₂ | 1 | 1 | -1 | -1 | Rz | жу | | B 1 | 1 | -1 | 1 | -1 | y, Ty, Rx | yz | | B ₂ | 1 | -1 | -1 | 1, | x, T _x , R _y | xz | The B₁ mode (schematic) The A₁ modes (schematic) Because the molecule must not rotate (rotations have been factored out) the H atom motions must lie in the yz plane for both of the A_1 modes. Further, their motions in the two A_1 modes must be quite different (the two A_1 modes must be quite different - they must be orthogonal). It makes chemical sense that one mode should be, essentially, an 0-H stretching mode. It follows that the second A_1 mode must have the general form shown. The A2 irreducible representation of the C2v point group is The B_1 irreducible representation is Form the direct product by multiplying pairs of characters together $$A_2 \times B_1$$ (1x1) (1x-1) (-1x1) (-1x-1) 1 -1 -1 1 = B_2 We conclude that the direct product A_2xB_1 is B_2 . The <u>direct product</u> of two representations is the representation obtained when pairs of corresponding characters are multplied together The direct product table of the Cov point group | C ₂₄ | A ₃ | . A ₂ | B ₁ | B ₂ | |-----------------|----------------|------------------|----------------|----------------| | A ₁ | A ₃ | . A ₂ | B ₁ | B ₂ | | A ₂ | A ₂ | , A ₁ | B ₂ | B ₁ | | B ₁ | B ₁ | . B ₂ | Al | A ₂ | | B ₂ | B ₂ | , B ₁ | A ₂ | | The direct product table of the Cqu point group | | A ₁ | A ₂ | E | |----------------|------------------|-----------------------|----------| | A | A | A ₂ | E | | A ₂ | . A ₂ | A ₁ | E | | E | E | E | A1+A2+E | Note that the totally symmetric irreducible representation (A₁ in both of the above tables) only appears on the leading diagonal of these tables. This is invariably the case for all direct product tables. We conclude that it is always true that:- The totally symmetric irreducible representation is only generated when an irreducible representation is multiplied by itself. ### 53 | Oxygen orbital | Symmetry species | Does integration give a non-zero result? | |-----------------------------|------------------|--| | 6 | A | Yes | | P _K | ^B 2 | No | | $\mathtt{P}_{\mathbf{y}}$ | В | No | | $\mathbf{F}_{\mathbf{Z}}$ | Al | No | | ₫ _{z2} | A ₁ | No | | ^d z ² | Al | No | | d
xy | A ₂ | No | | d _{x2} | B ₂ | Ио | | ^d yz | В | No | $$\int \psi_{e}(A_{1}) \ \hat{\mu}_{x} \ \psi_{g}(A_{1}) \ d\tau$$ $\hat{\mu}_{x}$ transforms as B_{2} so we have to form the triple direct product $A_{1} \times B_{2} \times A_{1} = A_{1} \times (B_{2} \times A_{1}) = A_{1} \times B_{2} = B_{2}$ Integration over all space of a non-totally symmetric irreducible representation gives zero so we conclude that the A_{1} vibration is not active in x polarization. $$\int \psi_e(A_1) \hat{\mu}_y \psi_g(A_1) d\tau$$ We have $A_1 \times B_1 \times A_1 = B_1 \Rightarrow$ zero integral. The A_1 vibration is not allowed in y polarization. We have $A_1 \times A_1 \times A_1 = A_2 \Rightarrow$ non-zero integral. The A_1 vibration is allowed (and may hence be identified) in z polarization. $$\int \!\! \psi_e(B_1) \; \hat{\rho}_x \; \psi_g(A_1) \; d\tau$$ We have $B_1 \times B_2 \times A_1 = A_2 \Rightarrow$ zero integral. The B_1 vibration is not allowed in x polarization. We have $B_1 \times B_1 \times A_2 = A_1 \Rightarrow$ non-zero integral. The B_1 vibration is allowed (and may hence be identified) in y polarization. $$\int \psi_{\mathbf{e}}(\mathbf{B}_{1}) \; \hat{\boldsymbol{\mu}}_{\mathbf{z}} \; \psi_{\mathbf{g}}(\mathbf{A}_{1}) \; \; \mathrm{d}\boldsymbol{\tau}$$ We have $B_1 \times A_1 \times A_1 = B_1 \Rightarrow$ zero integral. The B_1 vibration is not allowed in a polarization. The A₁ vibrations are In both cases the dipole moment changes along the z direction and it is only the integral $\int \psi_{e}(A_{1}) \hat{\mu}_{z} \psi_{g}(A_{1}) d\tau \quad \text{which is non zero (direct product } A_{1} \times A_{1} \times A_{1} = A_{1})$ The B₁ vibration The dipole moment changes along the y direction and it is only the integral $\int \psi_{e}(B_{1})\hat{\mu}_{y} \psi_{g}(A_{1})d\tau \quad \text{which is non-zero (direct product } B_{1} \times B_{1} \times A_{1} = A_{1})$ 56 $\begin{array}{ccc} \text{SF}_6 & & \text{O}_h \\ & \text{BrF}_5 & & \text{C}_{h\,\text{v}} \\ \text{BF}_3 & & \text{D}_{3h} \\ & \text{NH}_3 & & \text{C}_{3\text{v}} \\ & \text{CH}_k & & \text{T}_d \end{array}$ c₂ σ_v σ_v' **57** a) Translation along z b) Translation along y c) Translation along x d) The oxygen p orbital e) The oxygen p_v f) The oxygen p g) The oxygen d₂₂ -1 h) The oxygen d_{vz} -1 i) The oxygen dzx j) The oxygen d_{x2-y2} -1 k) The oxygen dxv 1) The dipole moment -1 m) Rotation about z n) Rotation about y -1 1 o) Rotation about x 1. $2A_1 + A_2 + B_2$ 2. $A_1 + 2A_2 + 3B_1 + B_2$ 3. $A_1 + 2A_2 + 2E$ 4. A₁ + E $A_2 + B_2 + E$ 6. $2k_2 + B_1 + B_2 + E$